37 resultados para Neural Network Models for Competing Risks Data
Resumo:
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Since the computer viruses pose a serious problem to individual and corporative computer systems, a lot of effort has been dedicated to study how to avoid their deleterious actions, trying to create anti-virus programs acting as vaccines in personal computers or in strategic network nodes. Another way to combat viruses propagation is to establish preventive policies based on the whole operation of a system that can be modeled with population models, similar to those that are used in epidemiological studies. Here, a modified version of the SIR (Susceptible-Infected-Removed) model is presented and how its parameters are related to network characteristics is explained. Then, disease-free and endemic equilibrium points are calculated, stability and bifurcation conditions are derived and some numerical simulations are shown. The relations among the model parameters in the several bifurcation conditions allow a network design minimizing viruses risks. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present various diagnostic methods for polyhazard models. Polyhazard models are a flexible family for fitting lifetime data. Their main advantage over the single hazard models, such as the Weibull and the log-logistic models, is to include a large amount of nonmonotone hazard shapes, as bathtub and multimodal curves. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. A discussion of the computation of the likelihood displacement as well as the normal curvature in the local influence method are presented. Finally, an example with real data is given for illustration.
Resumo:
Rats were trained in a Pavlovian serial ambiguous target discrimination, in which a target cue was reinforced if it was preceded by one stimulus (P -> T+) but was not reinforced if it was preceded by another stimulus (N -> T-). Test performance indicated that stimulus control by these features was weaker than that acquired by features trained within separate serial feature positive (P -> T+, T-) and serial feature negative (N -> W-, W+) discriminations. The form of conditioned responding and the patterns of transfer observed suggested that the serial ambiguous target discrimination was solved by occasion setting. The data are discussed in terms of the use of retrospective coding strategies when solving Pavlovian serial conditional discriminations, and the acquisition of special properties by both feature and target stimuli. (C) 2008 Published by Elsevier B.V.
Resumo:
In temporal lobe epilepsy (TLE) seizures, tonic or clonic motor behaviors (TCB) are commonly associated with automatisms, versions, and vocalizations, and frequently occur during secondary generalization. Dystonias are a common finding and appear to be associated with automatisms and head deviation, but have never been directly linked to generalized tonic or clonic behaviors. The objective of the present study was to assess whether dystonias and TCB are coupled in the same seizure or are associated in an antagonistic and exclusive pattern. Ninety-one seizures in 55 patients with TLE due to mesial temporal sclerosis were analyzed. Only patients with postsurgical seizure outcome of Engel class I or II were included. Presence or absence of dystonia and secondary generalization was recorded. Occurrence of dystonia and occurrence of bilateral tonic or clonic behaviors were negatively correlated. Dystonia and TCB may be implicated in exclusive, non-coincidental, or even antagonistic effects or phenomena in TLE seizures. A neural network related to the expression of one behavioral response (e.g., basal ganglia activation and dystonia) might theoretically ""displace"" brain activation or disrupt the synchronism of another network implicated in pathological circuit reverberation and seizure expression. The involvement of basal ganglia in the blockade of convulsive seizures has long been observed in animal models. The question is: Do dystonia and underlying basal ganglia activation represent an attempt of the brain to block imminent secondary generalization? (C) 2007 Elsevier Inc. All rights reserved.