34 resultados para Neonates, EEG Analysis, Seizures, Signal Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use networks composed of three phase-locked loops (PLLs), where one of them is the master, for recognizing noisy images. The values of the coupling weights among the PLLs control the noise level which does not affect the successful identification of the input image. Analytical results and numerical tests are presented concerning the scheme performance. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many engineering applications, the time coordination of geographically separated events is of fundamental importance, as in digital telecommunications and integrated digital circuits. Mutually connected (MC) networks are very good candidates for some new types of application, such as wireless sensor networks. This paper presents a study on the behavior of MC networks of digital phase-locked loops (DPLLs). Analytical results are derived showing that, even for static networks without delays, different synchronous states may exist for the network. An upper bound for the number of such states is also presented. Numerical simulations are used to show the following results: (i) the synchronization precision in MC DPLLs networks; (ii) the existence of synchronous states for the network does not guarantee its achievement and (iii) different synchronous states may be achieved for different initial conditions. These results are important in the neural computation context. as in this case, each synchronous state may be associated to a different analog memory information. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localization and Mapping are two of the most important capabilities for autonomous mobile robots and have been receiving considerable attention from the scientific computing community over the last 10 years. One of the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF algorithm that is capable of processing two-dimensional maps containing up to 1.8 k features at real time (14 Hz), a three-fold improvement over a Pentium M 1.6 GHz, and a 13-fold improvement over an ARM920T 200 MHz. The proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canalizing genes possess such broad regulatory power, and their action sweeps across a such a wide swath of processes that the full set of affected genes are not highly correlated under normal conditions. When not active, the controlling gene will not be predictable to any significant degree by its subject genes, either alone or in groups, since their behavior will be highly varied relative to the inactive controlling gene. When the controlling gene is active, its behavior is not well predicted by any one of its targets, but can be very well predicted by groups of genes under its control. To investigate this question, we introduce in this paper the concept of intrinsically multivariate predictive (IMP) genes, and present a mathematical study of IMP in the context of binary genes with respect to the coefficient of determination (CoD), which measures the predictive power of a set of genes with respect to a target gene. A set of predictor genes is said to be IMP for a target gene if all properly contained subsets of the predictor set are bad predictors of the target but the full predictor set predicts the target with great accuracy. We show that logic of prediction, predictive power, covariance between predictors, and the entropy of the joint probability distribution of the predictors jointly affect the appearance of IMP genes. In particular, we show that high-predictive power, small covariance among predictors, a large entropy of the joint probability distribution of predictors, and certain logics, such as XOR in the 2-predictor case, are factors that favor the appearance of IMP. The IMP concept is applied to characterize the behavior of the gene DUSP1, which exhibits control over a central, process-integrating signaling pathway, thereby providing preliminary evidence that IMP can be used as a criterion for discovery of canalizing genes.