33 resultados para Mouse hepatitis viruses (MHV)
Resumo:
This study was undertaken to evaluate the prevalence of GB virus C (GBV-C) viraemia and anti-E2 antibody, and to assess the effect of co-infection with GBV-C and HIV during a 10-year follow-up of a cohort of 248 HIV-infected women. Laboratory variables (mean and median CD4 counts, and HIV and GBV-C viral loads) and clinical parameters were investigated. At baseline, 115 women had past exposure to GBV-C: 57 (23%) were GBV-C RNA positive and 58 (23%) were anti-E2 positive. There was no statistical difference between the groups (GBV-C RNA + /anti-E2 -, GBV-C RNA - /anti-E2 + and GBV-C RNA - /anti-E2 -) regarding baseline CD4 counts or HIV viral loads (P = 0.360 and 0.713, respectively). Relative risk of death for the GBV-C RNA + /anti-E2 - group was 63% lower than that for the GBV-C RNA - /anti-E2 - group. Multivariate analysis demonstrated that only HIV loads >= 100,000 copies/mL and AIDS-defining illness during follow-up were associated with shorter survival after AIDS development. It is likely that antiretroviral therapy (ART) use in our cohort blurred a putative protective effect related to the presence of GBV-C RNA.
Resumo:
The neurohypophyseal hormone arginine vasopressin (AVP) is a classic mitogen in many cells. In K-Ras-dependent mouse Y1 adrenocortical malignant cells, AVP elicits antagonistic responses such as the activation of the PKC and the ERK1/2 mitogenic pathways to down-regulate cyclin D1 gene expression, which induces senescence-associated beta-galactosidase (SA-beta Gal) and leads to cell cycle arrest. Here, we report that in the metabolic background of Y1 cells, PKC activation either by AVP or by PMA inhibits the PI3K/Akt pathway and stabilises the p27(Kip1) protein even in the presence of the mitogen fibroblast growth factor 2 (FGF2). These results suggest that p27(Kip1) is a critical signalling node in the mechanisms underlying the survival of the Y1 cells. In Y1 cells that transiently express wild-type p27(Kip1), AVP caused a severe reduction in cell survival, as shown by clonogenic assays. However, AVP promoted the survival of Y1 cells transiently expressing mutant p27-S10A or mutant p27-T187A, which cannot be phosphorylated at Ser10 and Thr187, respectively. In addition, PKC activation by PMA mimics the toxic effect caused by AVP in Y1 cells, and inhibition of PKC completely abolishes the effects caused by both PMA and AVP in clonogenic assays. The vulnerability of Y1 cells during PKC activation is a phenotype conditioned upon K-ras oncogene amplification because K-Ras down-regulation with an inducible form of the dominant-negative mutant H-RasN17 has resulted in Y1 cells that are resistant to AVP`s deleterious effects. These data show that the survival destabilisation of K-Ras-dependent Y1 malignant cells by AVP requires large quantities of the p27(Kip1) protein as well as phosphorylation of the p27(Kip1) protein at both Ser10 and Thr187. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
It has been postulated that noncoding RNAs (ncRNAs) are involved in the posttranscriptional control of gene expression, and may have contributed to the emergence of the complex attributes observed in mammalians. We show here that the complement of ncRNAs expressed from intronic regions of the human and mouse genomes comprises at least 78,147 and 39,660 transcriptional units, respectively. To identify conserved intronic sequences expressed in both humans and mice, we used custom-designed human cDNA microarrays to separately interrogate RNA from mouse and human liver, kidney, and prostate tissues. An overlapping tissue expression signature was detected for both species, comprising 198 transcripts; among these, 22 RNAs map to intronic regions with evidence of evolutionary conservation in humans and mice. Transcription of selected human-mouse intronic ncRNAs was confirmed using strand-specific RT-PCR. Altogether, these results support an evolutionarily conserved role of intronic ncRNAs in human and mouse, which are likely to be involved in the fine tuning of gene expression regulation in different mammalian tissues. (C) 2008 Elsevier Inc. All rights reserved.