46 resultados para Monte Carlo study


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis B is a worldwide health problem affecting about 2 billion people and more than 350 million are chronic carriers of the virus. Nine HBV genotypes (A to I) have been described. The geographical distribution of HBV genotypes is not completely understood due to the limited number of samples from some parts of the world. One such example is Colombia, in which few studies have described the HBV genotypes. In this study, we characterized HBV genotypes in 143 HBsAg-positive volunteer blood donors from Colombia. A fragment of 1306 bp partially comprising HBsAg and the DNA polymerase coding regions (S/POL) was amplified and sequenced. Bayesian phylogenetic analyses were conducted using the Markov Chain Monte Carlo (MCMC) approach to obtain the maximum clade credibility (MCC) tree using BEAST v.1.5.3. Of all samples, 68 were positive and 52 were successfully sequenced. Genotype F was the most prevalent in this population (77%) - subgenotypes F3 (75%) and Fib (2%). Genotype G (7.7%) and subgenotype A2 (15.3%) were also found. Genotype G sequence analysis suggests distinct introductions of this genotype in the country. Furthermore, we estimated the time of the most recent common ancestor (TMRCA) for each HBV/F subgenotype and also for Colombian F3 sequences using two different datasets: (i) 77 sequences comprising 1306 bp of S/POL region and (ii) 283 sequences comprising 681 bp of S/POL region. We also used two other previously estimated evolutionary rates: (i) 2.60 x 10(-4) s/s/y and (ii) 1.5 x 10(-5) s/s/y. Here we report the HBV genotypes circulating in Colombia and estimated the TMRCA for the four different subgenotypes of genotype F. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is a frequent cause of acute and chronic hepatitis and a leading cause for cirrhosis of the liver and hepatocellular carcinoma. HCV is classified in six major genotypes and more than 70 subtypes. In Colombian blood banks, serum samples were tested for anti-HCV antibodies using a third-generation ELISA. The aim of this study was to characterize the viral sequences in plasma of 184 volunteer blood donors who attended the ""Banco Nacional de Sangre de la Cruz Roja Colombiana,`` Bogota, Colombia. Three different HCV genomic regions were amplified by nested PCR. The first of these was a segment of 180 bp of the 5`UTR region to confirm the previous diagnosis by ELISA. From those that were positive to the 5`UTR region, two further segments were amplified for genotyping and subtyping by phylogenetic analysis: a segment of 380 bp from the NS5B region; and a segment of 391 bp from the E1 region. The distribution of HCV subtypes was: 1b (82.8%), 1a (5.7%), 2a (5.7%), 2b (2.8%), and 3a (2.8%). By applying Bayesian Markov chain Monte Carlo simulation, it was estimated that HCV-1b was introduced into Bogota around 1950. Also, this subtype spread at an exponential rate between about 1970 to about 1990, after which transmission of HCV was reduced by anti-HCV testing of this population. Among Colombian blood donors, HCV genotype 1b is the most frequent genotype, especially in large urban conglomerates such as Bogota, as is the case in other South American countries. J. Med. Virol. 82: 1889-1898, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular epidemiological data concerning the hepatitis B virus (HBV) in Chile are not known completely. Since the HBV genotype F is the most prevalent in the country, the goal of this study was to obtain full HBV genome sequences from patients infected chronically in order to determine their subgenotypes and the occurrence of resistance-associated mutations. Twenty-one serum samples from antiviral drug-naive patients with chronic hepatitis B were subjected to full-length PCR amplification, and both strands of the whole genomes were fully sequenced. Phylogenetic analyses were performed along with reference sequences available from GenBank (n = 290). The sequences were aligned using Clustal X and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted by Markov Chain Monte Carlo simulations (MCMC) for 10 million generations in order to obtain the substitution tree using BEAST. The sequences were also analyzed for the presence of primary drug resistance mutations using CodonCode Aligner Software. The phylogenetic analyses indicated that all sequences were found to be the HBV subgenotype F1b, clustered into four different groups, suggesting that diverse lineages of this subgenotype may be circulating within this population of Chilean patients. J. Med. Virol. 83: 1530-1536, 2011. (C) 2011 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Social organization is an important component of the population biology of a species that influences gene flow, the spatial pattern and scale of movements, and the effects of predation or exploitation by humans. An important element of social structure in mammals is group fidelity, which can be quantified through association indices. To describe the social organization of marine tucuxi dolphins (Sotalia guianensis) found in the Cananeia estuary, southeastern Brazil, association indices were applied to photo-identification data to characterize the temporal stability of relationships among members of this population. Eighty-seven days of fieldwork were conducted from May 2000 to July 2003, resulting in direct observations of 374 distinct groups. A total of 138 dolphins were identified on 1-38 distinct field days. Lone dolphins were rarely seen, whereas groups were composed of up to 60 individuals (mean +/- 1 SD = 12.4 +/- 11.4 individuals per group). A total of 29,327 photographs were analyzed, of which 6,312 (21.5%) were considered useful for identifying individuals. Half-weight and simple ratio indices were used to investigate associations among S. guianensis as revealed by the entire data set, data from the core study site, and data from groups composed of <= 10 individuals. Monte Carlo methods indicated that only 3 (9.3%) of 32 association matrices differed significantly from expectations based on random association. Thus, our study suggests that stable associations are not characteristic of S. guianensis in the Cananeia estuary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we compare the performance of two statistical approaches for the analysis of data obtained from the social research area. In the first approach, we use normal models with joint regression modelling for the mean and for the variance heterogeneity. In the second approach, we use hierarchical models. In the first case, individual and social variables are included in the regression modelling for the mean and for the variance, as explanatory variables, while in the second case, the variance at level 1 of the hierarchical model depends on the individuals (age of the individuals), and in the level 2 of the hierarchical model, the variance is assumed to change according to socioeconomic stratum. Applying these methodologies, we analyze a Colombian tallness data set to find differences that can be explained by socioeconomic conditions. We also present some theoretical and empirical results concerning the two models. From this comparative study, we conclude that it is better to jointly modelling the mean and variance heterogeneity in all cases. We also observe that the convergence of the Gibbs sampling chain used in the Markov Chain Monte Carlo method for the jointly modeling the mean and variance heterogeneity is quickly achieved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monte Carlo simulation and quantum mechanics calculations based on the INDO/CIS and TD-DFT methods were utilized to study the solvatochromic shift of benzophenone when changing the environment from normal water to supercritical (P = 340.2 atm and T = 673 K) condition. Solute polarization increases the dipole moment of benzophenone, compared to gas phase, by 88 and 35% in normal and supercritical conditions, giving the in-solvent dipole value of 5.8 and 4.2 D, respectively. The average number of solute-solvent hydrogen bonds was analyzed, and a large decrease of 2.3 in normal water to only 0.8 in the supercritical environment was found. By using these polarized models of benzophenone in the two different conditions of water, we performed MC simulations to generate statistically uncorrelated configurations of the solute surrounded by the solvent molecules and subsequent quantum mechanics calculations on these configurations. When changing from normal to supercritical water environment, INDO/CIS calculations explicitly considering all valence electrons of the 235 solvent water molecules resulted in a solvatochromic shift of 1425 cm(-1) for the most intense transition of benzophenone, that is, slightly underestimated in comparison with the experimentally inferred result of 1700 cm(-1). TD-B3LYP/6-311+G(2d,p) calculations on the same configurations but with benzophenone electrostatically embedded in the 320 water molecules resulted in a solvatochromic shift of 1715 cm(-1) for this transition, in very good agreement with the experimental result. When using the unpolarized model of the benzophenone, this calculated solvatochromic shift was only 640 cm(-1). Additional calculations were also made by using BHandHLYP/6-311+G(2d,p) to analyze the effect of the asymptotic decay of the exchange functional. This study indicates that, contrary to the general expectation, there is a sizable solute polarization even in the low-density regime of supercritical condition and that the inclusion of this polarization is important for a reliable description of the spectral shifts considered here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonequilibrium phase transition of the one-dimensional triplet-creation model is investigated using the n-site approximation scheme. We find that the phase diagram in the space of parameters (gamma, D), where gamma is the particle decay probability and D is the diffusion probability, exhibits a tricritical point for n >= 4. However, the fitting of the tricritical coordinates (gamma(t), D(t)) using data for 4 <= n <= 13 predicts that gamma(t) becomes negative for n >= 26, indicating thus that the phase transition is always continuous in the limit n -> infinity. However, the large discrepancies between the critical parameters obtained in this limit and those obtained by Monte Carlo simulations, as well as a puzzling non-monotonic dependence of these parameters on the order of the approximation n, argue for the inadequacy of the n-site approximation to study the triplet-creation model for computationally feasible values of n.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study the spectrum of the lowest screening masses for Yang-Mills theories on the lattice. We used the SU(2) gauge group in (3 + 1) dmensions. We adopted the multiple exponential method and the so-called ""variational"" method, in order to detect possible excited states. The calculations were done near the critical temperature of the confinement-deconfinement phase transition. We obtained values for the ratios of the screening masses consistent with predictions from universality arguments. A Monte Carlo evolution of the screening masses in the gauge theory confirms the validity of the predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is interest in studying latent variables. These latent variables are directly considered in the Item Response Models (IRM) and they are usually called latent traits. A usual assumption for parameter estimation of the IRM, considering one group of examinees, is to assume that the latent traits are random variables which follow a standard normal distribution. However, many works suggest that this assumption does not apply in many cases. Furthermore, when this assumption does not hold, the parameter estimates tend to be biased and misleading inference can be obtained. Therefore, it is important to model the distribution of the latent traits properly. In this paper we present an alternative latent traits modeling based on the so-called skew-normal distribution; see Genton (2004). We used the centred parameterization, which was proposed by Azzalini (1985). This approach ensures the model identifiability as pointed out by Azevedo et al. (2009b). Also, a Metropolis Hastings within Gibbs sampling (MHWGS) algorithm was built for parameter estimation by using an augmented data approach. A simulation study was performed in order to assess the parameter recovery in the proposed model and the estimation method, and the effect of the asymmetry level of the latent traits distribution on the parameter estimation. Also, a comparison of our approach with other estimation methods (which consider the assumption of symmetric normality for the latent traits distribution) was considered. The results indicated that our proposed algorithm recovers properly all parameters. Specifically, the greater the asymmetry level, the better the performance of our approach compared with other approaches, mainly in the presence of small sample sizes (number of examinees). Furthermore, we analyzed a real data set which presents indication of asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of strong negative asymmetry of the latent traits distribution. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The two-parameter Birnbaum-Saunders distribution has been used successfully to model fatigue failure times. Although censoring is typical in reliability and survival studies, little work has been published on the analysis of censored data for this distribution. In this paper, we address the issue of performing testing inference on the two parameters of the Birnbaum-Saunders distribution under type-II right censored samples. The likelihood ratio statistic and a recently proposed statistic, the gradient statistic, provide a convenient framework for statistical inference in such a case, since they do not require to obtain, estimate or invert an information matrix, which is an advantage in problems involving censored data. An extensive Monte Carlo simulation study is carried out in order to investigate and compare the finite sample performance of the likelihood ratio and the gradient tests. Our numerical results show evidence that the gradient test should be preferred. Further, we also consider the generalized Birnbaum-Saunders distribution under type-II right censored samples and present some Monte Carlo simulations for testing the parameters in this class of models using the likelihood ratio and gradient tests. Three empirical applications are presented. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high incidence of waterborne diseases is observed worldwide and in order to address contamination problems prior to an outbreak, quantitative microbial risk assessment is a useful tool for estimating the risk of infection. The objective of this paper was to assess the probability of Giardia infection from consuming water from shallow wells in a peri-urban area. Giardia has been described as an important waterborne pathogen and reported in several water sources, including ground waters. Sixteen water samples were collected and examined according to the US EPA (1623, 2005). A Monte Carlo method was used to address the potential risk as described by the exponential dose response model. Giardia cysts occurred in 62.5% of the samples (0.1-36.1 cysts/l). A median risk of 10-1 for the population was estimated and the adult ingestion was the highest risk driver. This study illustrates the vulnerability of shallow well water supply systems in peri-urban areas.