83 resultados para Mathematical Model of Domain Ontology
Resumo:
Suppression of the renin-angiotensin system during lactation causes irreversible renal structural changes. In this study we investigated 1) the time course and the mechanisms underlying the chronic kidney disease caused by administration of the AT(1) receptor blocker losartan during lactation, and 2) whether this untoward effect can be used to engender a new model of chronic kidney disease. Male Munich-Wistar pups were divided into two groups: C, whose mothers were untreated, and L(Lact), whose mothers received oral losartan (250 mg.kg(-1).day(-1)) during the first 20 days after delivery. At 3 mo of life, both nephron number and the glomerular filtration rate were reduced in L(Lact) rats, whereas glomerular pressure was elevated. Unselective proteinuria and decreased expression of the zonula occludens-1 protein were also observed, along with modest glomerulosclerosis, significant interstitial expansion and inflammation, and wide glomerular volume variation, with a stable subpopulation of exceedingly small glomeruli. In addition, the urine osmolality was persistently lower in L(Lact) rats. At 10 mo of age, L(Lact) rats exhibited systemic hypertension, heavy albuminuria, substantial glomerulosclerosis, severe renal interstitial expansion and inflammation, and creatinine retention. Conclusions are that 1) oral losartan during lactation can be used as a simple and easily reproducible model of chronic kidney disease in adult life, associated with low mortality and no arterial hypertension until advanced stages; and 2) the mechanisms involved in the progression of renal injury in this model include glomerular hypertension, glomerular hypertrophy, podocyte injury, and interstitial inflammation.
Resumo:
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Resumo:
Preoperative progressive pneumoperitoneum (PPP) is a safe and effective procedure in the treatment of large incisional hernia (size > 10 cm in width or length) with loss of domain (LIHLD). There is no consensus in the literature on the amount of gas that must be insufflated in a PPP program or even how long it should be maintained. We describe a technique for calculating the hernia sac volume (HSV) and abdominal cavity volume (ACV) based on abdominal computerized tomography (ACT) scanning that eliminates the need for subjective criteria for inclusion in a PPP program and shows the amount of gas that must be insufflated into the abdominal cavity in the PPP program. Our technique is indicated for all patients with large or recurrent incisional hernias evaluated by a senior surgeon with suspected LIHLD. We reviewed our experience from 2001 to 2008 of 23 consecutive hernia surgical procedures of LIHLD undergoing preoperative evaluation with CT scanning and PPP. An ACT was required in all patients with suspected LIHLD in order to determine HSV and ACV. The PPP was performed only if the volume ratio HSV/ACV (VR = HSV/ACV) was a parts per thousand yen25% (VR a parts per thousand yen 25%). We have performed this procedure on 23 patients, with a mean age of 55.6 years (range 31-83). There were 16 women and 7 men with an average age of 55.6 years (range 31-83), and a mean BMI of 38.5 kg/m(2) (range 23-55.2). Almost all patients (21 of 23 patients-91.30%) were overweight; 43.5% (10 patients) were severely obese (obese class III). The mean calculated volumes for ACV and HSV were 9,410 ml (range 6,060-19,230 ml) and 4,500 ml (range 1,850-6,600 ml), respectively. The PPP is performed by permanent catheter placed in a minor surgical procedure. The total amount of CO(2) insufflated ranged from 2,000 to 7,000 ml (mean 4,000 ml). Patients required a mean of 10 PPP sessions (range 4-18) to achieve the desired volume of gas (that is the same volume that was calculated for the hernia sac). Since PPP sessions were performed once a day, 4-18 days were needed for preoperative preparation with PPP. The mean VR was 36% (ranged from 26 to 73%). We conclude that ACT provides objective data for volume calculation of both hernia sac and abdominal cavity and also for estimation of the volume of gas that should be insufflated into the abdominal cavity in PPP.
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.
Resumo:
IRI is closely related to sepsis in ITx setting. Complete understanding of the mechanisms involved in IRI development may improve outcomes. Ortothopic ITx without immunosuppression was performed in order to characterize IRI-associated mucosal damage. Twenty pigs underwent ITx. Two groups were assigned to different CI times: G1: 90 min and, G2: 180 min. Euro-Collins was used as preservation solution. Jejunal fragments were collected at donor laparotomy, 30 min, and 3 days after reperfusion. IRI assessment involved: histopathologic analysis, quantification of MPO-positive cells through immunohistochemical studies, quantification of epithelial apoptotic cells using TUNEL staining, and quantification of IL-6, ET-1, Bak, and Bcl-XL genes expression by RT-PCR. Neutrophilic infiltration increased in a similar fashion in both groups, but lasted longer in G2. Apoptosis detected by TUNEL staining increased and anti-apoptotic gene Bcl-XL expression decreased significantly in G1, 3 days after surgery. Endothelin-1 and IL-6 genes expression increased 30 min after the procedure and returned to baseline 3 days after surgery. In conclusion, IL-6 and ET-1 are involved precociously in the development of intestinal IRI. Apoptosis was more frequently detected in G1 grafts by TUNEL-staining and by RT-PCR.
Resumo:
Background: Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over optimal fluid management for these patients. This study aimed to investigate the effects of acute hemodilution with hydroxyethyl starch (HES) or lactated Ringer`s solution (LR) in intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in dogs submitted to a cryogenic brain injury model. Methods: Design-Prospective laboratory animal study. Setting-Research laboratory in a teaching hospital. Subjects-Thirty-five male mongrel dogs. Interventions-Animals were enrolled to five groups: control, hemodilution with LR or HES 6% to an hematocrit target of 27% or 35%. Results: ICP and CPP levels were measured after cryogenic brain injury. Hemodilution promotes an increment of ICP levels, which decreases CPP when hematocrit target was estimated in 27.% after hemodilution. However, no differences were observed regarding crystalloid or colloid solution used for hemodilution in ICP and CPP levels. Conclusions: Hemodilution to a low hematocrit level increases ICP and decreases CPP scores in dogs submitted to a cryogenic brain injury. These results suggest that excessive hemodilution to a hematocrit below 30% should be avoided in traumatic brain injury patients.
Resumo:
7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorporate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.
Resumo:
For the purpose of developing a longitudinal model to predict hand-and-foot syndrome (HFS) dynamics in patients receiving capecitabine, data from two large phase III studies were used. Of 595 patients in the capecitabine arms, 400 patients were randomly selected to build the model, and the other 195 were assigned for model validation. A score for risk of developing HFS was modeled using the proportional odds model, a sigmoidal maximum effect model driven by capecitabine accumulation as estimated through a kinetic-pharmacodynamic model and a Markov process. The lower the calculated creatinine clearance value at inclusion, the higher was the risk of HFS. Model validation was performed by visual and statistical predictive checks. The predictive dynamic model of HFS in patients receiving capecitabine allows the prediction of toxicity risk based on cumulative capecitabine dose and previous HFS grade. This dose-toxicity model will be useful in developing Bayesian individual treatment adaptations and may be of use in the clinic.
Resumo:
Vitamin D (VD), is a steroid hormone with multiple functions in the central nervous system (CNS), producing numerous physiological effects mediated by its receptor (VDR). Clinical and experimental studies have shown a link between VD dysfunction and epilepsy. Along these lines, the purpose of our work was to analyze the relative expression of VDR mRNA in the hippocampal formation of rats during the three periods of pilocarpine-induced epilepsy. Male Wistar rats were divided into five groups: (1) control group; rats that received saline 0.9%, i.p. and were killed 7 days after its administration (CTRL, n = 8), (2) SE group; rats that received pilocarpine and were killed 4 h after SE (SE, n = 8), (3) Silent group-7 days; rats that received pilocarpine and were killed 7 days after SE (SIL 7d, n = 8), (4) Silent group-14 days; rats that received pilocarpine and were killed 14 days after SE (SIL 14d, n = 8), (5) Chronic group; rats that received pilocarpine and were killed 60 days after the first spontaneous seizure, (chronic, n = 8). The relative expression of VDR mRNA was determined by real-time PCR. Our results showed an increase of the relative expression of VDR mRNA in the SIL 7 days, SIL 14 days and Chronic groups, respectively (0.060 +/- 0.024; 0.052 +/- 0.035; 0.085 +/- 0.055) when compared with the CTRL and SE groups (0.019 +/- 0.017; 0.019 +/- 0.025). These data suggest the VDR as a possible candidate participating in the epileptogenesis process of the pilocarpine model of epilepsy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Introduction: Xenotransplantation and multivisceral transplantation are advanced therapeutic methods that still require a scientific basis. There are no experimental models of multivisceral transplantation available, particularly not the monitoring by endoscopy. Here, we describe the endoscopic features in a model of multivisceral xenotransplantation. Methods: The distal esophagus, stomach, intestine, colon, liver, pancreas, and the kidneys with a common vascular pedicle were harvested from rabbits and implanted in swine (group I, n = 9) or in rabbits (group II, n = 4). Endoscopy was performed in the stomach, jejunum, and ascending colon at four consecutive time points (immediate after surgery and 10, 90, and 180 min after reperfusion). Lesions were macroscopically graded as mild, moderate, and severe. Biopsies were taken following sacrifice at 180 min after reperfusion. Results: In group I, the stomach, jejunum, and colon manifested a progression of lesions with predominance of mild lesions after 10 min, mild to moderate lesions after 90 min, and moderate to severe lesions after 180 min. In animals from group II, endoscopy showed normal features at all time points after reperfusion. Histopathologic analysis confirmed the diagnosis of hyperacute rejection in group I. Grafts from group II animals presented normal or mild ischemic/reperfusion injury. Conclusion: All animals subjected to multivisceral xenotransplantation showed a progression of endoscopic lesions with time after transplantation, while animals subjected to allotransplantation showed no aberrations in endoscopy. We conclude that endoscopy is a useful tool in the assessment of hyperacute rejection of a xenograft.
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects. (C) 2011 Published by Elsevier B.V.
Resumo:
We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres` content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11 %] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P .05). S100 group had a larger maximum lung volume, V30, compared with the MEC group (P .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.
Resumo:
Introduction The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi. Methods Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively). Results CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours. Conclusions In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.