117 resultados para Kolmogorov complexity
Resumo:
Este trabalho apresenta, a partir de histórias de vida, características do processo de "encontro transformador" entre dois moradores de rua e uma professora, que foi "ponto de apoio" positivo em suas vidas. O "encontro transformador" é interação entre os seres humanos que possibilita a transformação dos envolvidos, no sentido de despertar suas potencialidades, a retomada do sentido da vida, promovendo-lhes a resiliência, que é a capacidade humana de fazer frente às adversidades da vida, superá-las e sair delas fortalecidos e, inclusive, transformados. O estudo longitudinal realizado envolveu o resgate de histórias de vida, através de entrevistas abertas, fotografias, registros em Diário de Campo e desenhos feitos pelos sujeitos de observação. Na interpretação dos dados contemplou-se o emprego de conceitos de determinadas teorias de: Psicologia, Geografia, Sociologia, Direito, Ciências da Educação, Complexidade e Sistêmica, em diálogo entre diferentes disciplinas. A análise do fenômeno - em que o morar na rua surgiu como situação existencial excludente - revelou nova configuração nas psiques dos moradores de rua, em movimento de transformação. No fenômeno observado - complexo - desvelou-se a dificuldade dos moradores de rua estudados de se manterem no processo resiliente sem o apoio efetivo da Sociedade Civil e do Estado, a partir de políticas públicas voltadas para esse tipo de população. Conclui-se pela importância dos resultados deste trabalho como contribuição para a ampliação de processos de formação, não só de profissionais que atuam com moradores de rua como de integrantes da sociedade em geral, norteados por uma visão solidária de busca de cidadania para todos
Resumo:
Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests if in fact it should be m - 1. If the hypothesis is rejected, m is increased and a new test is carried out. The method continues (increasing m) until the hypothesis is accepted. The theoretical core of the method is the full Bayesian significance test, an intuitive Bayesian approach, which needs no model complexity penalization nor positive probabilities for sharp hypotheses. Numerical experiments were based on a cDNA microarray dataset consisting of expression levels of 205 genes belonging to four functional categories, for 10 distinct strains of Saccharomyces cerevisiae. To analyze the method's sensitivity to data dimension, we performed principal components analysis on the original dataset and predicted the number of classes using 2 to 10 principal components. Compared to Mclust (model-based clustering), our method shows more consistent results.
Resumo:
Large-conductance Ca(2+)-activated K(+) channels (BK) play a fundamental role in modulating membrane potential in many cell types. The gating of BK channels and its modulation by Ca(2+) and voltage has been the subject of intensive research over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between states in the same plane are cooperative and modulated by Ca(2+). Transitions across planes are highly concerted and voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by Ca(2+). Large single channel data sets at five Ca(2+) concentrations were simultaneously analyzed from a Bayesian perspective by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for homotetramers, able to explain the Ca(2+) modulation of the gating process. This model differs from the standard Monod-Wyman-Changeux scheme in that one distinguishes when two Ca(2+) ions are bound to adjacent or diagonal subunits of the tetramer.
Resumo:
Background: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. Methods/Principal Findings: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of ""what if'' situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. Conclusion/Significance: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.
Resumo:
Background: The rapid progress currently being made in genomic science has created interest in potential clinical applications; however, formal translational research has been limited thus far. Studies of population genetics have demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic background of patient cohorts may often be complex. Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327) from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets. A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and drug response confirmed substantial within-and between-group heterogeneity. Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.
Resumo:
Background: High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Methods and Findings: Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors) - loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Conclusions: Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains cognitive and motor skills in the piano execution. In contrast, attention to the cognitive aspects may constrain the expressivity and automatism of piano performances.
Resumo:
Background: The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin alpha 5 beta 1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results: Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion: Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.
Resumo:
Creation of cold dark matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework, we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin, and Brandenberger, MNRAS 291, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the Lambda CDM model. The difference between the CCDM and Lambda CDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple chi(2)-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances, the CCDM scenario analyzed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating Lambda CDM cosmology.
Resumo:
Background: Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results: The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions: In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts that were differently modulated by ERBB2-mediated expression and that can be tested as molecular markers for breast cancer. Such a methodology will be useful for completely deciphering the cancer cell transcriptome diversity resulting from AS and for finding more precise molecular markers.
Resumo:
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3487516]
Resumo:
In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.
Resumo:
We show a function that fits well the probability density of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space. It deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics. We also show how one can quickly and easily estimate the Kolmogorov-Sinai entropy and the short-term correlation function by realizing observations of high probable returns. Our analyses are performed numerically in the Henon map and experimentally in a Chua's circuit. Finally, we discuss how our approach can be used to treat the data coming from experimental complex systems and for technological applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263943]
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.