47 resultados para Internal fixation in fractures
Resumo:
Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electromagnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmagnetic medium properties. This result is valid even, and especially, for low size parameter values. Expressions for the contributions of the radial and angular field components to the internal energy are determined. For the analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual properties of the magnetic scatters, which could be important in some applications. (C) 2010 Optical Society of America
Resumo:
The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Nino - Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.
Resumo:
Thermal action on timber causes it to degrade through combustion of its chemical components, which leads to the release of vapors, combustible gases and surface char. This diminishes its load capacity, due to the reduction of its cross section by charring and to changes in its mechanical properties of strength and stiffness as a function of its exposure to high temperatures. This paper reports the charring rates observed on Eucalyptus structural beams and presents a numerical and experimental study of the behavior of these beams when exposed to fire, in which the properties of strength and stiffness were evaluated as a function of rising temperatures, allowing an analysis of the effect of the section factor on the internal rise in temperature of structural Eucalyptus beams.
Resumo:
A nonlinear finite element model was developed to simulate the nonlinear response of three-leaf masonry specimens, which were subjected to laboratory tests with the aim of investigating the mechanical behaviour of multiple-leaf stone masonry walls up to failure. The specimens consisted of two external leaves made of stone bricks and mortar joints, and an internal leaf in mortar and stone aggregate. Different loading conditions, typologies of the collar joints, and stone types were taken into account. The constitutive law implemented in the model is characterized by a damage tensor, which allows the damage-induced anisotropy accompanying the cracking process to be described. To follow the post-peak behaviour of the specimens with sufficient accuracy it was necessary to make the damage model non-local, to avoid mesh-dependency effects related to the strain-softening behaviour of the material. Comparisons between the predicted and measured failure loads are quite satisfactory in most of the studied cases. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and cross-linking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A standardised nested-PCR method that amplifies a region of the glycoprotein E gene of avian infectious laryngotracheitis virus (ILTV) has been developed for the diagnosis of infection by Gallid herpesvirus 1. The two sets of primers employed produced the expected ampIification products of 524bp(externa I primers) and 219bp (internal primers) in the presence of ILTV DNA, whereas no Such amplicons were obtained with other avian respiratory pathogens or with DNA extracted from the cells of uninfected chickens. The identity of the 219bp amplified product was con firmed by DNA sequencing. The standardised nested-PCR method detected ILTV DNA from trachea, lung, conjunctiva and trigeminal ganglia samples from flocks of birds with and without clinical signs. and showed hi.-h sensitivity (95.4%) and specificity (93.1%) when compared with the reference test involving virus isolation in specific-pathogen-free chicken embryos. The standardised nested-PCR method described may be used to detect clinical and latent ILTV infections, and will be of significant value for both diagnostic and epidemiological Studies. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In recent clinical studies, contamination of the inner parts of dental implants through bacterial penetration along the implant components has been observed. The aim of the present in-vitro study was to investigate leakage of Fusobacterium. nucleatum through the interface between implants and premachined or cast abutments. Both premachined (n = 10) and cast (n = 10) implant abutment assemblies were inoculated with 3.0 mu L of microbial inoculum. The assemblies were completely immersed in 5.0 mL of tryptic soy broth culture medium to observe leakage at the implant-abutment interface after 14 days of anaerobic incubation. Bacterial growth in the medium, indicative of microbial leakage, was found only in 1 out of 9 samples (11.1%) in each group. Both premachined and cast abutments connected to external hexagonal implants provide low percentages of bacterial leakage through the interface in in vitro unloaded conditions if the manufacturer`s instructions and casting procedures are properly followed.
Resumo:
We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.
Resumo:
Background: Rotational osteotomy is frequently indicated to correct excessive femoral anteversion in cerebral palsy patients. Angled blade plate is the standard fixation device used when performed in the proximal femur, but extensile exposure is required for plate accommodation. The authors developed a short locked intramedullary nail to be applied percutaneously in the fixation of femoral rotational osteotomies in children with cerebral palsy and evaluated its mechanical properties. Methods: The study was divided into three stages. In the first part, a prototype was designed and made based on radiographic measurements of the femoral medullary canal of ten-year-old patients. In the second, synthetic femoral models based on rapid-prototyping of 3D reconstructed images of patients with cerebral palsy were obtained and were employed to adjust the nail prototype to the morphological changes observed in this disease. In the third, rotational osteotomies were simulated using synthetic femoral models stabilized by the nail and by the AO-ASIF fixed-angle blade plate. Mechanical testing was done comparing both devices in bending-compression and torsion. Results: The authors observed proper adaptation of the nail to normal and morphologically altered femoral models, and during the simulated osteotomies. Stiffness in bending-compression was significantly higher in the group fixed by the plate (388.97 +/- 57.25 N/mm) than in that fixed by the nail (268.26 +/- 38.51 N/mm) as torsional relative stiffness was significantly higher in the group fixed by the plate (1.07 +/- 0.36 Nm/degrees) than by the nail (0.35 +/- 0.13 Nm/degrees). Conclusions: Although the device presented adequate design and dimension to fit into the pediatric femur, mechanical tests indicated that the nail was less stable than the blade plate in bending-compression and torsion. This may be a beneficial property, and it can be attributed to the more flexible fixation found in intramedullary devices.
Resumo:
Internal tapered connections were developed to improve biomechanical properties and to reduce mechanical problems found in other implant connection systems. The purpose of this study was to evaluate the effects of mechanical loading and repeated insertion/removal cycles on the torque loss of abutments with internal tapered connections. Sixty-eight conical implants and 68 abutments of two types were used. They were divided into four groups: groups 1 and 3 received solid abutments, and groups 2 and 4 received two-piece abutments. In groups 1 and 2, abutments were simply installed and uninstalled; torque-in and torque-out values were measured. In groups 3 and 4, abutments were installed, mechanically loaded and uninstalled; torque-in and torque-out values were measured. Under mechanical loading, two-piece abutments were frictionally locked into the implant; thus, data of group 4 were catalogued under two subgroups (4a: torque-out value necessary to loosen the fixation screw; 4b: torque-out value necessary to remove the abutment from the implant). Ten insertion/removal cycles were performed for every implant/abutment assembly. Data were analyzed with a mixed linear model (P <= 0.05). Torque loss was higher in groups 4a and 2 (over 30% loss), followed by group 1 (10.5% loss), group 3 (5.4% loss) and group 4b (39% torque gain). All the results were significantly different. As the number of insertion/removal cycles increased, removal torques tended to be lower. It was concluded that mechanical loading increased removal torque of loaded abutments in comparison with unloaded abutments, and removal torque values tended to decrease as the number of insertion/removal cycles increased. To cite this article:Ricciardi Coppede A, de Mattos MdaGC, Rodrigues RCS, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study.Clin. Oral Impl. Res. 20, 2009; 624-632.doi: 10.1111/j.1600-0501.2008.01690.x.
Resumo:
Daytime fatigue and lack of sleep seem to increase throughout adolescent years. Several environmental, psychological, and biological factors have been associated with the development of sleep across adolescence. The aim of the present article is to summarize these factors and to give examples of various outcomes in sleep patterns among adolescents studied in different cultural settings. It is obvious from earlier work that many adolescents have displaced circadian rhythms and lack of adaptation to school hours due to an early school start or additional burdens for work. Several interventions have aimed to help the adaptation process by supporting sleep processes and changing scheduling, in this way promoting classroom alertness. In summary, adolescents worldwide shorten their sleep due to schoolwork hours and additional work, especially by disturbing their sleep due to circadian misalignment
Resumo:
Abstract The importance of thrombosis and anticoagulation in clinical practice is rooted firmly in several fundamental constructs that can be applied both broadly and globally. Awareness and the appropriate use of anticoagulant therapy remain the keys to prevention and treatment. However, to assure maximal efficacy and safety, the clinician must, according to the available evidence, choose the right drug, at the right dose, for the right patient, under the right indication, and for the right duration of time. The first International Symposium of Thrombosis and Anticoagulation in Internal Medicine was a scientific program developed by clinicians for clinicians. The primary objective of the meeting was to educate, motivate and inspire internists, cardiologists and hematologists by convening national and international visionaries, thought-leaders and dedicated clinician-scientists in Sao Paulo, Brazil. This article is a focused summary of the symposium proceedings
Resumo:
Background: Adequate nutrition plays an important role in bone mass accrual and maintenance and has been demonstrated as a significant tool for the prevention of fractures in individuals with osteoporosis. Objective: The aim of the present study was to evaluate bone health-related nutrients intake and its association with osteoporotic fractures in a representative sample of 2344 individuals aged 40 years or older in Brazil. Methods: In a transversal population-based study, a total of 2420 individuals over 40 years old were evaluated from March to April 2006. Participants were men and women from all socioeconomic classes and education levels living around the Brazilian territory Individuals responded a questionnaire including self reported fractures as well a 24-hour food recall. Nutrient intakes were evaluated by Nutrition Data System for Research software (NDSR, University of Minnesota, 2007). Low trauma fracture was defined as that resulting of a fall from standing height or less. Nutrient intakes adequacies were performed by using the DRI's proposed values. Statistical analysis comprises Oneway ANCOVA adjusted by age and use of nutritional supplements and multiple logistic regression. SAS software was used for statistical analysis. Results: Fractures was reported by 13% of men and 15% of women. Women with fractures presented significantly higher calcium, phosphorus and magnesium intakes. However, in all regions and socio-economical levels mean intakes of bone related nutrients were below the recommended levels. It was demonstrated that for every 100 mg/phosphorus increase the risk of fractures by 9% (OR 1.09; IC95% 1.05-1.13, p < 0.001). Conclusion: The results demonstrated inadequacies in bone related nutrients in our population as well that an increase in phosphorus intake is related to bone fractures.
Resumo:
Elastic properties of freestanding porous silicon layers fabricated by electrochemical anodization were studied by Raman scattering. Different anodization currents provided different degrees of porosity in the nanometer scale. Raman lines corresponding to the longitudinal optical phonons of crystalline and amorphous phases were observed. The amorphous volume fraction increased and the phonon frequencies for both phases decreased with increasing porosity. A strain distribution model is proposed whose fit to the experimental results indicates that the increasing nanoscale porosity causes strain relaxation in the amorphous domains and strain buildup in the crystalline ones. The present analysis has significant implications on the estimation of the crystalline Si domain's characteristic size from Raman scattering data. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3225832] All rights reserved.