166 resultados para Integrated forensic approach
Resumo:
Background: Recent advances in laparoscopic devices and experience with advanced techniques have increased the indications for laparoscopic liver. Aim: The aim of this work was to present a video with technical aspects of a pure laparoscopic left hemi-hepatectomy (segments 2, 3, and 4) by using the intrahepatic Glissonian approach and control of venous outflow without hilar dissection or the Pringle maneuver. Patient and Method: A 63-year-old woman with a 5-cm solitary liver metastasis was referred for treatment. Four trocars were used. The left lobe was pulled upward and the lesser omentum was divided, exposing Arantius' ligament. This ligament is a useful landmark for the identification of the main left Glissonian pedicle. A small anterior incision was made in front of the hilum, and a large clamp was introduced behind the Arantius' ligament toward the anterior incision, allowing control of the left main sheath. Ischemic discoloration of the left liver was achieved and marked with cautery. The vascular clamp was replaced by a stapler. If ischemic delineation was coincident with a previously marked area, the stapler was fired. The left hepatic vein was dissected and encircled. Parenchymal transection and vascular control of the hepatic veins were accomplished with a Harmonic scalpel and an endoscopic stapling device, as appropriate. All these steps were performed without the Pringle maneuver and without hand assistance. Results: Operative time was 220 minutes with minimum blood loss. Hospital stay was 4 days. Pathology showed free surgical margins. The patient is alive with no signs of recurrence 18 months after the operation. Conclusion: Totally laparoscopic left hemihepatectomy is safe and feasible in selected patients and should be considered for patients with benign or malignant liver neoplasms. The described technique, with the use of the intrahepatic Glissonian approach and control of venous outflow, may facilitate laparoscopic left hemihepatectomy by reducing the technical difficulties in pedicle control and may decrease bleeding during liver transection.
Resumo:
Background: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. Results: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 mu g of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c(+), CD11b(+) and CD19(+) cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). Conclusions: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.
Resumo:
Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.
Resumo:
Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.
Resumo:
In geophysics and seismology, raw data need to be processed to generate useful information that can be turned into knowledge by researchers. The number of sensors that are acquiring raw data is increasing rapidly. Without good data management systems, more time can be spent in querying and preparing datasets for analyses than in acquiring raw data. Also, a lot of good quality data acquired at great effort can be lost forever if they are not correctly stored. Local and international cooperation will probably be reduced, and a lot of data will never become scientific knowledge. For this reason, the Seismological Laboratory of the Institute of Astronomy, Geophysics and Atmospheric Sciences at the University of Sao Paulo (IAG-USP) has concentrated fully on its data management system. This report describes the efforts of the IAG-USP to set up a seismology data management system to facilitate local and international cooperation.
Resumo:
Aims. We calculate the theoretical event rate of gamma-ray bursts (GRBs) from the collapse of massive first-generation (Population III; Pop III) stars. The Pop III GRBs could be super-energetic with the isotropic energy up to E(iso) greater than or similar to 10(55-57) erg, providing a unique probe of the high-redshift Universe. Methods. We consider both the so-called Pop III.1 stars (primordial) and Pop III.2 stars (primordial but affected by radiation from other stars). We employ a semi-analytical approach that considers inhomogeneous hydrogen reionization and chemical evolution of the intergalactic medium. Results. We show that Pop III.2 GRBs occur more than 100 times more frequently than Pop III.1 GRBs, and thus should be suitable targets for future GRB missions. Interestingly, our optimistic model predicts an event rate that is already constrained by the current radio transient searches. We expect similar to 10-10(4) radio afterglows above similar to 0.3 mJy on the sky with similar to 1 year variability and mostly without GRBs (orphans), which are detectable by ALMA, EVLA, LOFAR, and SKA, while we expect to observe maximum of N < 20 GRBs per year integrated over at z > 6 for Pop III.2 and N < 0.08 per year integrated over at z > 10 for Pop III.1 with EXIST, and N < 0.2 for Pop III.2 GRBs per year integrated over at z > 6 with Swift.
Resumo:
Aims. An analytical solution for the discrepancy between observed core-like profiles and predicted cusp profiles in dark matter halos is studied. Methods. We calculate the distribution function for Navarro-Frenk-White halos and extract energy from the distribution, taking into account the effects of baryonic physics processes. Results. We show with a simple argument that we can reproduce the evolution of a cusp to a flat density profile by a decrease of the initial potential energy.
Resumo:
The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as ametallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.
Resumo:
The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.
Resumo:
The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.
Resumo:
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in A + A collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time (tau(rel)) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small tau(rel) it also allows one to catch the viscous effects in hadronic component-hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion m(T) spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher p(T) particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
Resumo:
We examine the possibility that a new strong interaction is accessible to the Tevatron and the LHC. In an effective theory approach, we consider a scenario with a new color-octet interaction with strong couplings to the top quark, as well as the presence of a strongly coupled fourth generation which could be responsible for electroweak symmetry breaking. We apply several constraints, including the ones from flavor physics. We study the phenomenology of the resulting parameter space at the Tevatron, focusing on the forward-backward asymmetry in top pair production, as well as in the production of the fourth-generation quarks. We show that if the excess in the top production asymmetry is indeed the result of this new interaction, the Tevatron could see the first hints of the strongly coupled fourth-generation quarks. Finally, we show that the LHC with root s = 7 TeV and 1 fb(-1) integrated luminosity should observe the production of fourth-generation quarks at a level at least 1 order of magnitude above the QCD prediction for the production of these states.
Resumo:
In this paper, we estimate the losses during teleportation processes requiring either two high-Q cavities or a single bimodal cavity. The estimates were carried out using the phenomenological operator approach introduced by de Almeida et al. [Phys. Rev. A 62, 033815 (2000)].
Resumo:
In this study we have used fluorescence spectroscopy to determine the post-mortem interval. Conventional methods in forensic medicine involve tissue or body fluids sampling and laboratory tests, which are often time demanding and may depend on expensive analysis. The presented method consists in using time-dependent variations on the fluorescence spectrum and its correlation with the time elapsed after regular metabolic activity cessation. This new approach addresses unmet needs for post-mortem interval determination in forensic medicine, by providing rapid and in situ measurements that shows improved time resolution relative to existing methods. (C) 2009 Optical Society of America