468 resultados para Induced Behavioral Fever


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this study were to characterize the spatial distribution of neurodegeneration after status epilepticus (SE) induced by either systemic (S) or intrahippocampal (H) injection of pilocarpine (PILO), two models of temporal lobe epilepsy (TLE), using FluoroJade (FJ) histochemistry, and to evaluate the kinetics of FJ staining in the H-PILO model. Therefore, we measured the severity of behavioral seizures during both types of SE and also evaluated the FJ staining pattern at 12, 24, and 168 h (7 days) after the H-PILO insult. We found that the amount of FJ-positive (FJ+) area was greater in SE induced by S-PILO as compared to SE induced by H-PILO. After SE induced by H-PILO, we found more FJ+ cells in the hilus of the dentate gyrus (DG) at 12 h, in CA3 at 24 h, and in CA1 at 168 h. We found also no correlation between seizure severity and the number of FJ+ cells in the hippocampus. Co-localization studies of FJ+ cells with either neuronal-specific nuclear protein (NeuN) or glial fibrillary acidic protein (GFAP) labeling 24 h after H-PILO demonstrated spatially selective neurodegeneration. Double labeling with FJ and parvalbumin (PV) showed both FJ+/PV+ and FJ+/PV- cells in hippocampus and entorhinal cortex, among other areas. The current data indicate that FJ+ areas are differentially distributed in the two TLE models and that these areas are greater in the S-PILO than in the H-PILO model. There is also a selective kinetics of FJ+ cells in the hippocampus after SE induced by H-PILO, with no association with the severity of seizures, probably as a consequence of the extra-hippocampal damage. These data point to SE induced by H-PILO as a low-mortality model of TLE, with regional spatial and temporal patterns of FJ staining. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epileptic seizures are clinical manifestations of neuronal discharges characterized by hyperexcitability and/or hypersynchrony in the cortex and other subcortical regions. The pilocarpine (PILO) model of epilepsy mimics temporal lobe epilepsy (TLE) in humans. In the present study, we used a more selective approach: microinjection of PILO into the hilus of the dentate gyrus (H-PILO). Our main goal was to evaluate the behavioral and morphological alterations present in this model of TLE. Seventy-six percent of all animals receiving H-PILO injections had continuous seizures called status epilepticus (SE). A typical pattern of evolution of limbic seizures during the SE with a latency of 29.3 +/- 16.3 minutes was observed using an analysis of behavioral sequences. During the subsequent 30 days, 71% of all animals exhibited spontaneous recurrent seizures (SRSs) during a daily 8-hour videotaping session. These SRSs had a very conspicuous and characteristic pattern detected by behavioral sequences or neuroethological analysis. Only the animals that had SE showed positive Neo-Timm staining in the inner molecular layer of the dentate gyrus (sprouting) and reduced cell density in Ammon`s horn pyramidal cell subfield CA1. However, no correlation between the intensity of sprouting and the mean number and total number of SRSs was found. Additionally, using Fluoro-Jade staining, we observed neurodegeration in the hilus and pyramidal cell subfields CA3 and CM 24 hours after SE. These data indicate that H-PILO is a reliable, selective, efficient, low-mortality model that mimics the acute and chronic behavioral and morphological aspects of TLE. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POW mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 mu g/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POW neurons in the hypothalamus and an increased mRNA expression of these neuropeptides. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chronic mild stress (CMS) model has been used as an animal model of depression which induces anhedonic behavior in rodents. The present study was aimed to evaluate the behavioral and physiological effects of administration of P-carboline harmine in rats exposed to CMS Procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days. In this study, sweet food consumption, adrenal gland weight, adrenocorticotrophin hormone (ACTH) levels, and hippocampal brain-derived-neurotrophic factor (BDNF) protein levels were assessed. Our findings demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, increase ACTH circulating levels in rats and increase BDNF protein levels. Interestingly, treatment with harmine reversed anhedonia, the increase of adrenal gland weight, normalized ACTH circulating levels and BDNF protein levels. Finally, these findings further support the hypothesis that harmine could be a new pharmacological tool for the treatment of depression. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the role of kinins, prostaglandins (PGs) and nitric oxide (NO) in mechanical hypernociception, Spontaneous nociception and paw oedema after intraplantar (ipl) injection of Tityus serrulatus venom (Tsv) in male Wistar rats. Tsv was ipl-injected in doses of 0.01-10 mu g/paw. Pre-treatment (30 min prior) with DALBK (100 nmol/paw) and icatibant (10 nmol/paw), B1 and B2 selective kinin receptor antagonists, L-NAME (50 mg/kg, i.p., a non-selective nitric oxide synthase inhibitor) or celecoxib, selective COX-2 inhibitor, was given 1 h prior per os (5 mg/kg, p.o.), significantly reduced the hypernociceptive response (Von Frey method), the spontaneous nociception (determined by counting the number of flinches) and paw oedema (plethysmometer method) induced by Tsv at doses of 1.0 and 10 mu g/paw for both nociceptive and oedematogenic responses, respectively. Nevertheless, indomethacin (5 mg/kg, i.p.. 30 min prior) was ineffective in altering all of these events. The results of the present study show that Tsv, injected ipl into the rat paw, causes a dose-dependent paw oedema, mechanical hypernociception and flinches (a characteristic biphasic response) in which kinins and NO are substantially involved. Although celecoxib was effective against the oedema and pain caused by Tsv, COX-2 does not seem to be involved in the inflammatory response caused by Tsv. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Larval behavioral diapause was shown to be the major factor controlling the 1-yr generation pattern of Amblyomma cajennense (F.) (Acari: Ixodidae) in Brazil. During fieldwork, this behavior was shown to coincide with long daylength (>12 h) and high mean ground temperature (approximate to 25 degrees C), which prevail during spring-summer in Brazil. The current study evaluated biological parameters of engorged females, their eggs, and the resultant larvae inside plastic pots planted with the grass Brachiaria decumbens Stapf. held in incubators set with different combinations of temperature and photoperiod. Both the long daylength (photoperiod 14:10 [L:D]h) and high temperature (25 degrees C) during larval hatching induced larval behavioral diapause, characterized by the confinement of hatched larvae on the ground below the vegetation for many weeks. When long daylength was present during hatching, but temperature was low (15 degrees C), larvae did not enter diapause. Similarly, when short daylength (10:14 or 12:12) was present during larval hatching, larvae did not enter diapause regardless whether temperature was high (25 degrees C). Termination of diapause was induced by shifting photoperiod from 14:10 to 12:12 or the temperature from 25 to 15 degrees C. When applied to field conditions, the present results indicate that both high ground mean temperature (approximate to 25 degrees C) and long daylength (>12 h) during spring-summer (October-March) are responsible for the induction and maintenance of A. cajennense larval behavioral diapause in the field. Furthermore, both the low ground mean temperature (-20 degrees C) and the short daylength (<12h) during autumn (April-May) are responsible for termination of larval behavioral diapause in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) has been reported as a potential site for opioid regulation of behavioral selection. Opioid-mediated behavioral and physiological responses differ between nulliparous and multiparous females. This study addresses the effects of multiple reproductive experiences on mu-, kappa- and delta-opioid receptor (Oprm1, Oprk1, and Oprd1 respectively) gene activity and mu, kappa and delta protein expression (MOR, KOR and DOR respectively) in the PAG of the female rats. This was done by evaluating the opioid gene expression using real-time (RT-PCR) and quantification of each protein receptor by Western blot analysis. The RT-PCR results show that multiple reproductive experiences increase Oprm1 and Oprk1 gene expression. Western blot analysis revealed increased MOR and KOR while DOR protein was decreased in multiparous animals. Taken together, these data suggest that multiple reproductive experiences influence both gene activity and opioid receptor expression in the PAG. Post-translational mechanisms seem particularly relevant for DOR expression. Thus, opioid transmission in the PAG might be modulated by different mechanisms of multiparity-induced plasticity according to the opioid receptor type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute infections lead to alterations in behavior, collectively known as sickness behavior. which includes reduction in locomotion, food ingestion, sexual and social behavior, environmental exploration, and sleep profile. Although generally seen as undesired, sickness behavior represents a conserved strategy for animals to overcome disease. Aging process is associated with a variety of changes in immunity, which are referred to as immunosenescence, and include higher mortality by infectious diseases. Few works studied sickness behavior display in old animals. Thus, we sought to investigate the display of sickness related behaviors on aged mice. Adult(3-6 months old), middle-aged (12-15 m) and aged mice (18-22 m)were treated with i.p. LPS (200 mu g/kg) and their behaviors were assessed in the open field and in the elevated plus-maze. Exploratory activity was similar in aged mice treated or not with LPS in both apparati. In the open field, locomotion remained at baseline levels; in the elevated plus-maze, there was a time-dependent decrease in motor activity. (C) 2008 Elsevier Inc. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mice allergic to ovalbumin (OVA) avoid drinking a solution containing this antigen. This was interpreted as related to IgE-dependent mast cell degranulation and sensory C fiber activation. Methods: We employed pharmacological manipulation to further investigate the mediators involved in immune-induced food aversion. Results: While nonimmunized rats preferred a sweetened OVA solution, immunized rats avoided it. We also employed a paradigm in which rats are conditioned to drink water for two 10-min sessions a day. Tolerant rats presented lower IgE titers, and this manipulation abrogated food aversion. Dexamethasone (1.0 mg/kg) prevented the aversion of OVA-immunized rats to the antigen-containing solution. Combined blockade of H(1) and 5-hydroxytryptamine (5-HT)(2) receptors by promethazine (3.0 mg/kg) plus methysergide (5.0 mg/kg) was unable to alter food aversion. Blockade of 5-HT(3) receptors by ondansetron (1.0 mg/kg) caused a twofold increase in the ingestion of the sweetened OVA solution by immunized rats, suggesting the involvement of 5-HT(3) receptors in food aversion. Finally, we showed that dexamethasone or promethazine plus methysergide, but not ondansetron, effectively prevented the IgE-dependent mast-cell-degranulation-induced increase in vascular permeability in rats. Conclusion: We suggest that regardless of whether or not they cause edema, IgE-mediated mast cell degranulation and consequent 5-HT(3) signaling are involved in the process that triggers avoidance to the source of the allergen in allergic rats. Copyright (C) 2008 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behavioral effects of the K-opioid receptor agonist U69593 were examined in lactating rats. On day 5 of lactation, animals were treated with 0.1 mg/kg of U69593 to determine whether it influences general activity and maternal latencies toward pups. Because little attention has been given to the possibility that pre-mating treatment with morphine may modulate the response to K-opioid receptor stimulation, another group of animals was submitted to the same acute challenge after abrupt withdrawal from repeated treatment with morphine sulfate during the pre-mating period (5 mg/kg on alternate days for a total of five doses). Acute F;opioid stimulation reduced total locomotion, rearing frequency, and time spent self-grooming and increased immobility duration. These K agonist effects were not observed in animals pretreated with morphine. Similarly, latencies to retrieve pups were longer only in animals pretreated with saline and challenged acutely with U69593. None of these effects were observed in morphine sulfate-pretreated animals. The present results suggest that pre-mating repeated exposure to morphine produces a tolerance-like effect on behavioral responses to low-dose K-opioid receptor stimulation in active reproductive females. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been widely associated to beneficial effects over different neuropathologies, but only a few studies associate them to Parkinson`s disease (PD). Rats were submitted to chronic supplementation (21-90 days of life) with fish oil, rich in omega-3 PUFAs, and were uni- or bilaterally lesioned with 4 mu g of the neurotoxin 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle Although lipid incorporation was evidenced in neuronal membranes, it was not sufficient to compensate motor deficits induced by 6-OHDA. In contrast, omega-3 PUFAs were capable of reducing rotational behavior induced by apomorphine, suggesting neuroprotection over dyskinesia The beneficial effects of omega-3 PUFAs were also evident in the maintenance of thiobarbituric acid reactive substances index from animals lesioned with 6-OHDA similar to levels from SHAM and intact animals. Although omega-3 PUFAs did not modify the tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area, nor the depletion of dopamine (DA) and its metabolites in the striatum, DA turnover was increased after omega-3 PUFAs chronic supplementation Therefore, it is proposed that omega-3 PUFAs action characterizes the adaptation of remaining neurons activity. altering striatal DA turnover without modifying the estimated neuronal population. (C) 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drugs that facilitate dopaminergic neurotransmission induce cognitive and attentional deficits which include inability to filter sensory input measured by prepulse inhibition (PPI) Methylphenidate, an amphetamine analog is used in the treatment of attention deficit hyperactivity disorder Given that nitric oxide (NO) modulates dopamine effect our aim is to analyze the nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC) inhibitors effect on PPI disruption induced by methylphenidate The inhibitors effects were compared to those produced by haloperidol and clozapine Male Swiss mice received a first I p. Injection (one hour before testing), of either saline, or N(G) nitro L-arginine (10, 40 or 90 mg/kg) or 7-Nitroindazole (3, 10, 30 or 60 mg/kg). or oxadiazolo-quinoxalin (5 or 10 mg/kg). or haloperidol (1 mg/kg), or clozapine (5 mg/kg) Thirty min later mice received the second injection of either saline or methylphenidate (20 or 30 mg/kg) or amphetamine (5 or 10 mg/kg). One group of mice received intracerebroventricular 7-Nitroindazole (50 or 100 nM) followed by systemic administration of saline or methylphenidate (30 mg/kg) The results revealed a methylphenidate dose-dependent disruption of PPI comparable to amphetamine. The effect was prevented by either nitric oxide synthase or guanilate cyclase inhibitors or clozapine or haloperidol In conclusion, methylphenidate induced a dose-dependent PPI disruption in Swiss mice modulated by dopamine and NO/sGC. The results corroborate the hypothesis of dopamine and NO interacting to modulate sensorimotor gating through central nervous system. It may be useful to understand methylphenidate and other psychostimulants effects (C) 2009 Elsevier B.V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) is thought to play a key role in the development of hypoxia-induced anapyrexia in mammals, acting on the preoptic region of the anterior hypothalamus to activate autonomic heat loss responses. Regarding behavioral thermoregulation, no data exists for NO modulation/mediation of thermoregulatory behavior changes during hypoxia. Therefore, we tested the hypothesis that NO is involved in the preferred body temperature (Tb) reduction in the hypoxic toad Chaunus schneideri (formerly Bufo paracnemis), a primarily behavioral thermoregulator. Toads equipped with a temperature probe were placed in a thermal gradient chamber, and preferred Tb was monitored continuously. We analyzed the effect of intracerebroventricular injections of the nonselective NO synthase inhibitor L-NMMA (200, 400 and 800 microg per animal) or mock cerebrospinal fluid (mCSF, vehicle) on the preferred Tb of toads. No significant difference in preferred Tb was observed after L-NMMA treatments. Another group of toads treated with 2 mg kg(-1) (400 microg per animal) of L-NMMA or mCSF was submitted to hypoxia (3% inspired 02) for 8 h. The vehicle group showed a reduction of preferred Tb, a response that was inhibited by L-NMMA. A 3rd group of hypoxic animals was injected with Ringer or L-NMMA (2 mg kg(-1)) into the lymph sac and both treatments induced no change in the anapyretic response to hypoxia. These results indicate that NO acting on the central nervous system has an excitatory role for the development of hypoxia-induced anapyrexia in toads. (C) 2008 Elsevier Inc. All rights reserved.