34 resultados para Indirect costs
Resumo:
The (2)H(d,p)(3)H and (2)H(d,n)(3)He reactions have been indirectly studied by means of the Trojan Horse Method applied to the quasi-free (2)H((3)He, p(3)H)(1)H (2)H((3)He, n(3)He)(1)H reaction at 18 MeV of beam energy. This is the first experiment where the spectator (here (1)H) has been detected in coincidence with the charged participant, avoiding the limitations of standard neutron detectors. The d - d relative energy has been measured from 1.5 MeV down to 2 keV, at center of mass angles from 40A degrees to 170A degrees. Indirect angular distributions are compared with the direct behaviour in the overlapping regions.
Resumo:
A capillary electrophoresis method for organic acids in wine was developed and validated. The optimal electrolyte consisted of 10 mmol/L 3,5-dinitrobenzoic acid (DNB) at pH 3.6 containing 0.2 mmol/L cetyltrimethylammonium bromide as flow reverser. DNB was chosen because it has an effective mobility similar to the organic acids under investigation, good buffering capacity at pH 3.6, and good chromophoric characteristics for indirect UV-absorbance detection at 254 nm. Sample preparation involved dilution and filtration. The method showed good performance characteristics: Linearity at 6 to 285 mg/L (r > 0.99); detection and quantification limits of 0.64 to 1.55 and 2.12 to 5.15 mg/L, respectively; separation time of less than 5.5 min. Coefficients of variation for ten injections were less than 5% and recoveries varied from 95% to 102%. Application to 23 samples of Brazilian wine confirmed good repeatability and demonstrated wide variation in the organic acid concentrations. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.
Resumo:
A new electrochemical methodology has been developed for the detection of ozone using multiwalled carbon nanotubes (MWCNT). The method presented here is based on the reaction of ozone with indigo blue dye producing anthranilic acid (ATN). The electrochemical profile of ATN on an electrode of glassy carbon (GC) modified with MWCNT showed an oxidation peak potential at 750 mV vs. Ag/AgCl. An analytical method was developed using differential pulse voltammetry (DPV) to determine ATN in a range of 50-400 nmol L(-1), with a detection limit of 9.7 nmol L(-1). Ozonated water samples were successfully analyzed by GC/MWCNT electrode and the recovery procedure yielded values between of 96.5 and 102.3%.