101 resultados para High temperature materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organosolv lignins can replace petroleum chemicals such as phenol either partially or totally in various applications. Eight lignins, seven of which corresponded to the ethanol-water fractionation of bagasse and the other to a reference lignin (Alcell (R)) were analyzed with the aim to evaluate their chemical and physicochemical characteristics. The purity of the lignin fractions was determined by high pressure liquid chromatography (HPLC) and by ash content. Fourier Transform-Infrared Spectroscopy (FTIR) techniques and differential UV spectroscopy were applied to identify the chemical groups in the lignin samples. The molecular weight distribution was determined by size exclusion chromatography (HPSEC). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to determine the mass loss due to the high temperature treatment. The lignins studied showed the presence of p-hydroxyphenyl (H unit) and a greater proportion of guaiacyl (G unit) moieties, lower purity, similar or greater amount of phenolic hydroxyl groups, and higher degradation temperatures, than the Alcell (R) lignin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ti-rich Ti-Si-B alloys can be considered for structural applications at high temperatures (max. 700 degrees C), however, phase equilibria data is reported only for T = 1250 degrees C. Thus, in this work the phase stability of this system has been evaluated at 700 degrees C. In order to attain equilibrium conditions in shorter time, rapid solidified samples have been prepared and carefully characterized. The microstructural characterization of the produced materials were based on X-ray diffraction (XRD), scanning electron microscopy (SEM-BSE), high resolution transmission electron microscopy (HRTEM), High Temperature X-ray diffraction with Synchrotron radiation (XRDSR) and Differential Scanning Calorimetry (DSC). Amorphous and amorphous with embedded nanocrystals have been observed after rapid solidification from specific alloy compositions. The values of the crystallization temperature (Tx) of the alloys were in the 509-647 degrees C temperature range. After Differential Scanning Calorimetry and High Temperature X-ray Diffraction with Synchrotron radiation, the alloys showed crystalline and basically formed by two or three of the following phases: alpha Ti, Ti(6)Si(2)B; Ti(5)Si(3); Ti(3)Si and TiB. It has been shown the stability of the Ti(3)Si and Ti(6)Si(2)B phases at 700 degrees C and the proposition of an isothermal section at this temperature. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The joint process between tapes of coated conductors is a critical issue for the most of the applications of high temperature superconductors (HTS). Using different fabrication techniques joints of YBCO coated superconductors were prepared and characterized through electrical measurements. For soldering material low melting point eutectic alloys, such as In-Sn (m.p. 116 degrees C) and Sn-Pb (m. p. 189 degrees C) were selected to prepare lap joints with effective length between 1 to 20 cm. The splice resistance and the critical current of the joints were evaluated by I-V curve measurements with the maximum current strength above the critical current, in order to evaluate the degree of degradation for each joint method. Pressed lap joints prepared with tapes without external reinforcement presented low resistance lap joint nevertheless some critical current degradation occurs when strong pressing is applied. When mechanical pressure is applied during the soldering process we can reduce the thickness of the solder alloy and a residual resistance arises from contributions of high resistivity matrix and external reinforcement. The lap joints for reinforced tape were prepared using two methods: the first, using ""as-supplied"" tape and the other after reinforcement-removal; in the latter case, the tapes were resoldered using Sn-Pb alloy. The results using several joint geometries, distinct surface preparation processes and different soldering materials are presented and analysed. The solder alloy with lower melting point and the longer joint length presented the smallest joint resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The internal stresses and crystallographic texture in alpha-Al(2)O(3) scales grown on iron aluminides at 1100 degrees C were determined in situ using synchrotron X-ray diffraction. In the first hour of oxidation, alpha-Al(2)O(3) was formed by direct nucleation and by conversion from transition oxides (either theta-Al(2)O(3) or a mixed Fe-Al oxide). A sharp texture develops connected with the direct nucleation of alpha-Al(2)O(3), in contrast to the weaker texture observed in alpha-Al(2)O(3) originated by previous transformations, which also yielded tensile stresses in early oxidation stages. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, intermetallic alloys Fe-Si and Fe-Al (Fe(3)Si-C-Cr and Fe(3)Al-C), produced by induction melting, were evaluated regarding their oxidation and abrasive resistance. The tests performed were quasi-isothermal oxidation, cyclic oxidation, and dry sand/rubber wheel abrasion. As reference, the ASTM A297-HH grade stainless steel was tested in the same conditions. In the oxidation tests, the Fe-Al based alloy presented the lowest oxidation rate, and the Fe-Si based alloy achieved the best results in the abrasion test, showing better performance than the HH type stainless steel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Five vegetable oils: canola, soybean, corn, cottonseed and sunflower oils were characterized with respect to their composition by gas chromatography and viscosity. The compositions of the vegetable oils suggest that they exhibit substantially different propensity for oxidation following the order of: canola < corn < cottonseed < sunflower approximate to soybean. Viscosities at 40 degrees C and 100 degrees C and the viscosity index (VI) values were determined for the vegetable oils and two petroleum oil quenchants: Microtemp 157 (a conventional slow oil) and Microtemp 153B (an accelerated or fast oil). The kinematic viscosities of the different vegetable and petroleum oils at 40 degrees C were similar. The VI values for the different vegetable oils were very close and varied between 209-220 and were all much higher than the VI values obtained for Microtemp 157 (96) and Microtemp 153B (121). These data indicate that the viscosity variations of these vegetable oils are substantially less sensitive to temperature variation than are the parafinic oil based Microtemp 157 and Microtemp 153B. Although these data suggest that any of the vegetable oils evaluated could be blended with minimal impact on viscosity, the oxidative stability would surely be substantially impacted. Cooling curve analysis was performed on these vegetable oils at 60 degrees C under non-agitated conditions. These results were compared with cooling curves obtained for Microtemp 157, a conventional, unaccelerated petroleum oil, and Microtemp 153B, an accelerated petroleum oil under the same conditions. The results showed that cooling profiles of the different vegetable oils were similar as expected from the VI values. However, no boiling was observed wit any of the vegetable oils and heat transfer occurs only by convection since there is no full-film boiling and nucleate boiling process as typically observed for petroleum oil quenchants, including those of this study. Therefore, high-temperature cooling is considerable faster for vegetable oils as a class. The cooling properties obtained suggest that vegetable oils would be especially suitable fur quenching low-hardenability steels such as carbon steels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We performed Synchrotron X-ray diffraction (XRD) analyses of internal residual stresses in monolithic samples of a newly developed Li(2)O-Al(2)O(3)-SiO(2) (LAS) glass-ceramic produced by sintering and in a commercial LAS glass-ceramic, CERAN (R), produced by the traditional crystal nucleation and growth treatments. The elastic constants were measured by instrumented indentation and a pulse-echo technique. The thermal expansion coefficient of virgilite was determined by high temperature XRD and dilatometry. The c-axis contracts with the increasing temperature whereas the a-axis does not vary significantly. Microcracking of the microstructure affects the thermal expansion coefficients measured by dilatometry and thermal expansion hysteresis is observed for the sintered glass-ceramic as well as for CERAN (R). The measured internal stress is quite low for both glass-ceramics and can be explained by theoretical modeling if the high volume fraction of the crystalline phase (virgilite) is considered. Using a modified Green model, the calculated critical (glass) island diameter for spontaneous cracking agreed with experimental observations. The experimental data collected also allowed the calculation of the critical crystal grain diameters for grain-boundary microcracking due to the anisotropy of thermal expansion of virgilite and for microcracking in the residual glass phase surrounding the virgilite particles. All these parameters are important for the successful microstructural design of sintered glass-ceramics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aluminum white dross is a valuable material principally due to its high metallic aluminum content. The aim of this work is to develop a method for quantitative analysis of aluminum white dross with high accuracy. Initially, the material was separated into four granulometric fractions by means of screening. Two samples of each fraction were obtained, which were analyzed by means of X-ray fluorescence and energy dispersive spectroscopy in order to determine the elements present in the samples. The crystalline phases aluminum, corundum, spinel, defect spinel, diaoyudaoite, aluminum nitride, silicon and quartz low were identified by X-ray diffraction. The quantitative phase analysis was performed by fitting the X-ray diffraction profile with the Rietveld method using the GSAS software. The following quantitative results were found: 77.8% aluminum, 7.3% corundum, 2.6% spinel, 7.6% defect spinel, 1.8% diaoyudaoite, 2.9% aluminum nitride, and values not significant of quartz and silicon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A duplex surface treatment consisting of High Temperature Gas Nitriding (HTGN) followed by Low Temperature Plasma Nitriding (LTPN) was carried out in an UNS S31803 duplex stainless steel. The HTGN treatment was intended to produce a relatively thick and hard fully austenitic layer giving mechanical support to the thinner and much harder expanded austenite layer. HTGN was performed at 1200 degrees C for 3 h, in a 0.1 MPa N(2) atmosphere while LTPN, was carried out in a 75% N(2) + 25% H(2) atmosphere, at 400 degrees C for 12 h, under a 250 Pa pressure, and 450 V. An expanded austenite gamma(N) layer, 2.3 mu m thick, 1500 HVO.025 hard, was formed on top of a 100 mu m thick, 330 HV 0.1 hard, fully austenitic layer, containing 0.9 wt% N. For comparison purposes LTPN was carried out with UNS S30403 stainless steel specimens obtaining a 4.0 mu m thick, 1500 HV 0.025 hard, expanded austenite layer formed on top of a fully austenitic matrix having 190 HV 0.1. The nitrided specimens were tested in a 20 kHz vibratory cavitation-erosion testing equipment. Comparison between the duplex treated UNS S31803 steel and the low temperature plasma nitrided UNS S30403 steel, resulted in incubation times almost 9 times greater. The maximum cavitation wear rate of the LTPN UNS S30403 was 5.5 g/m(2)h, 180 times greater than the one measured for the duplex treated UNS S31803 steel. The greater cavitation wear resistance of the duplex treated UNS S31803 steel, compared to the LTPN treated UNS S30403 steel was explained by the greater mechanical support the fully austenitic, 330 HV 0.1 hard, 100 mu m layer gives to the expanded austenite layer formed on top of the specimen after LTPN. A strong crystallographic textured surface, inherited from the fully austenitic layer formed during HTGN, with the expanded austenite layer showing {101} crystallographic planes//surface contributed also to improve the cavitation resistance of the duplex treated steel. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coatings based on NiCrAlC intermetallic based alloy were applied on AISI 316L stainless steel substrates using a high velocity oxygen fuel torch. The influence of the spray parameters on friction and abrasive wear resistance were investigated using an instrumented rubber wheel abrasion test, able to measure the friction forces. The corrosion behaviour of the coatings were studied with electrochemical techniques and compared with the corrosion resistance of the substrate material. Specimens prepared using lower O(2)/C(3)H(8) ratios showed smaller porosity values. The abrasion wear rate of the NiCrAlC coatings was much smaller than that described in the literature for bulk as cast materials with similar composition and one order of magnitude higher than bulk cast and heat treated (aged) NiCrAlC alloy. All coatings showed higher corrosion resistance than the AISI 316L substrate in HCl (5%) aqueous solution at 40 degrees C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, chemometric methods are reported as potential tools for monitoring the authenticity of Brazilian ultra-high temperature (UHT) milk processed in industrial plants located in different regions of the country. A total of 100 samples were submitted to the qualitative analysis of adulterants such as starch, chlorine, formal. hydrogen peroxide and urine. Except for starch, all the samples reported, at least, the presence of one adulterant. The use of chemometric methodologies such as the Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) enabled the verification of the occurrence of certain adulterations in specific regions. The proposed multivariate approaches may allow the sanitary agency authorities to optimise materials, human and financial resources, as they associate the occurrence of adulterations to the geographical location of the industrial plants. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Larval behavioral diapause was shown to be the major factor controlling the 1-yr generation pattern of Amblyomma cajennense (F.) (Acari: Ixodidae) in Brazil. During fieldwork, this behavior was shown to coincide with long daylength (>12 h) and high mean ground temperature (approximate to 25 degrees C), which prevail during spring-summer in Brazil. The current study evaluated biological parameters of engorged females, their eggs, and the resultant larvae inside plastic pots planted with the grass Brachiaria decumbens Stapf. held in incubators set with different combinations of temperature and photoperiod. Both the long daylength (photoperiod 14:10 [L:D]h) and high temperature (25 degrees C) during larval hatching induced larval behavioral diapause, characterized by the confinement of hatched larvae on the ground below the vegetation for many weeks. When long daylength was present during hatching, but temperature was low (15 degrees C), larvae did not enter diapause. Similarly, when short daylength (10:14 or 12:12) was present during larval hatching, larvae did not enter diapause regardless whether temperature was high (25 degrees C). Termination of diapause was induced by shifting photoperiod from 14:10 to 12:12 or the temperature from 25 to 15 degrees C. When applied to field conditions, the present results indicate that both high ground mean temperature (approximate to 25 degrees C) and long daylength (>12 h) during spring-summer (October-March) are responsible for the induction and maintenance of A. cajennense larval behavioral diapause in the field. Furthermore, both the low ground mean temperature (-20 degrees C) and the short daylength (<12h) during autumn (April-May) are responsible for termination of larval behavioral diapause in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.