42 resultados para Helium ground state wavefunction compact
Resumo:
The electronic structure and spectroscopic properties of a manifold of states of a new molecular species, BeAs, have been investigated theoretically at the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) approach, using the aug-cc-pV5Z-PP basis set for arsenic, which includes a relativistic effective core potential, and the cc-pV5Z set for beryllium. Potential energy curves of five quartet and eight doublet (I > + S) states correlating with the five lowest-lying dissociation limit are constructed. The effect of spin-orbit coupling is also included in the description of the ground state, and of the doublet states correlating with the second dissociation channel. Dipole moment functions and vibrationally averaged dipole moments are also evaluated. The similarities and differences between BeAs, BeP, and BeN are analyzed. Spin-orbit effects are small for the ground state close to the equilibrium distance, but avoided crossings between Omega = 1/2 states, and between Omega = 3/2 states changes significantly the I > + S curves for the lowest-lying doublets.
Resumo:
High-level CASSCF/MRCI calculations with a quintuple-zeta quality basis set are reported by characterizing for the first time a manifold of electronic states of the CAs radical yet to be investigated experimentally. Along with the potential energy curves and the associated spectroscopic constants, the dipole moment functions for selected electronic states as well as the transition dipole moment functions for the most relevant electronic transitions are also presented. Estimates of radiative transition probabilities and lifetimes complement this investigation, which also assesses the effect of spin-orbit interaction on the A (2)Pi state. Whenever pertinent, comparisons of similarities and differences with the isovalent CN and CP radicals are made.
Resumo:
The sequential Monte Carlo/CASPT2 approach was employed to investigate deactivation and emission processes from the lowest-lying pi pi * and n pi * excited states of 9H-adenine in aqueous solution. It is found that conical intersections connecting the pi pi* and n pi* states with the ground state are also present in solution, whereas the barriers for the deactivation paths are significantly smaller on solvated conditions. The large destabilization of the n pi* state found in solution possibly prevents its involvement in the deactivation photophysics and explains the change from a bi- to a mono-exponential decay for the molecule in the gas phase and solution, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure of the lowest-lying electronic states of W(2) were investigated at the CASPT2 level. The ground state is a X(1)Sigma(+)(g) state, followed by the a(3)Delta(u), b(3)Sigma(+)(u) and A(1)Delta(u) electronic states. Seven low-lying Omega-states were computed: (1)0(g)(+), (2)3(u), (3)2(u), (4)1(u), (5)0(u)(-), (6)1(u), and (7)2(u), with the ground state corresponding to the (1)0(g)(+)(X(1)Sigma(+)(g)) state. Comparison with the other VIB transition metal group dimers indicates a common pattern of electronic structure and spectroscopic properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Three water-insoluble, micelle-anchored flavylium salts, 7-hydroxy-3-octyl-flavylium chloride, 4`-hexyl-7-hydroxyflavylium chloride, and 6-hexyl-7-hydroxy-4-methyl-flavylium chloride, have been employed to probe excited-state prototropic reactions in micellar sodium dodecyl sulfate (SDS). In SDS micelles, the fluorescence decays of these three flavylium salts are tetraexponential functions in the pH range from 1.0 to 4.6 at temperatures from 293 to 318 K. The four components of the decays are assigned to Four kinetically coupled excited species in the micelle: specifically, promptly deprotonable (AH(+)*) and nonpromptly deprotonable (AH(h)(+)*) orientations of the acid in the micelle. the base-proton geminate pair (A*center dot center dot center dot H(+)), and the free conjugate base (A*). The initial prompt deprotonation to form the germinate pair occurs at essentially the same rate (k(d) similar to 6-7 x 10(10) s(-1)) for all three photoacids. Recombination of the germinate pair is similar to 3-fold faster than the rate of proton escape from the pair (k(rec) similar to 3 x 10(10) s(-1) and k(diss) similar to 1 x 10(10) s(-1)), corresponding to an intrinsic recombination efficiency of the pair of similar to 75%. Finally, the reprotonation of the short-lived free A* (200-350 ps, depending oil the photoacid) has two components, only one of which depends oil the proton concentration in the intermicellar aqueous phase. Ultrafast transfer of the proton to water and substantial compartmentalization of the photogenerated proton at the micelle surface Oil the picosecond time scale strongly suggest preferential transfer of the proton to preformed hydrogen-bonded water bridges between the photoacid and the anionic headgroups. This localizes the proton in the vicinity of the excited base much more efficiently than ill bulk water, resulting ill the predominance of geminate re reprotonation at the micelle surface.
Resumo:
New lanthanide complexes with benzeneseleninic (ABSe) and 4-chloro-benzeneseleninic (ABSeCl) acids have been synthesized and characterized by elemental analysis, infrared and UV-visible spectroscopies. The emission spectra of the trivalent europium complexes presented the typical electronic (5)D(0) -> (7)F(j) transitions of the ion (J = 0-4). The ground-state geometries of the europium complexes have been calculated by using the Sparkle/AM1 model. From these results, the 4f-4f intensity parameters and energies of the ligand singlet and triplet excited states have been obtained. The lower emission quantum yield for the [Eu(ABSe)(3)(H(2)O)(2)](H(2)O)(2) compound, as compared to the [Eu(Al(3)SeCl)(3)(H(2)O)(2)] one, can be associated to the higher numbers of water molecules, in the first and second coordination spheres, that contribute to the luminescence quenching. The [Eu(Al(3)Se)(3)(H(2)O)(2)](H(2)O)(2) complex presents an intermediate state whose energy difference with respect to the first excited singlet state is resonant with three phonons from the water molecules, favouring a multiphonon relaxation process from the singlet state followed by a fast internal conversion process; this effect is less pronounced in the complex with the ABSeCl ligand. The luminescence decay curves of the gadolinium complexes indicate that the level responsible for the intramolecular energy transfer process has a triplet character for both compounds. The nephelauxetic effect in these compounds was investigated under the light of a recently proposed covalency scale based on the concept of overlap polarizability of the chemical bond. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The intermediacy of the geminate base proton pair (A*center dot center dot center dot H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base proton pair A*center dot center dot center dot H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*center dot center dot center dot H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec) of A*center dot center dot center dot H(+)) from the diffusion controlled rates (dissociation, k(diss) and formation, k(diff)[H(+)], of A*center dot center dot center dot H+), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).
Resumo:
Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit Coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given, The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 angstrom and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.
Resumo:
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.
Resumo:
The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).
Resumo:
Multiconfigurational SCF and second-order perturbation theory have been employed to study seven low-lying singlet and triplet electronic states of the Mo-2 molecule. The bond order of the ground state has been analyzed based on the effective bond order (EBO), indicating that a fully developed sextuple bond is formed between the two Mo atoms. The experimentally observed excited states a(3)Sigma(+)(u) and A(1)Sigma(+)(u) have been determined and the so-called (3)Lambda excited state identified as the b(3)Sigma(+)(u) state, in agreement with experimental expectations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Folate is shown to react with singlet-excited state of riboflavin in a diffusion controlled reaction and with triplet-excited state of riboflavin in a somewhat slower reaction with (3)k(q) = 4.8 x 10(8) L mol(-1) s(-1) in aqueous phosphate buffer at pH 7.4, ionic strength of 0.2 mol L(-1), and 25 degrees C. Singlet quenching is assigned as photo-induced reductive electron transfer from ground state folate to singlet-excited riboflavin, while triplet quenching is assigned as one-electron transfer rather than hydrogen atom transfer from folate to triplet-excited riboflavin, as the reaction quantum yield, phi = 0.32, is hardly influenced by solvent change from water to deuterium oxide, phi = 0.37. Cyclic voltammetry showed an irreversible two-electron anodic process for folate, E = 1.14 V versus NHE at a scan-rate of 50 mV s(-1), which appears to be kinetically controlled by the heterogeneous electron transfer from the substrates to the electrode. Main products of folate photooxidation sensitized by riboflavin were pterin-6-carboxylic acid and p-aminobenzoyl-L-glutamic acid as shown by liquid chromatographic ion-trap mass spectrometry (LC-IT-MS).