52 resultados para GENOME PROJECT
Resumo:
We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches` Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109103 base pairs, with 31.9 % GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY376688. (c) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.
Resumo:
Constructing highways in dense urban areas is always a challenge. In Sao Paulo Metropolitan Region, heavy truck traffic contributes to clog streets and expressways alike. As part of the traffic neither originates nor head to the region, a peripheral highway has been proposed to reduce traffic problems. This project called Rodoanel, is an expressway approximately 175 km long. The fact that the projected south and north sections would cross catchments that supply most of the metropolis water demand was strongly disputed and made the environmental permitting process particularly difficult. The agency in charge commissioned a strategic environmental assessment (SEA) of a revamped project, and called it the Rodoanel Programme. However, the SEA report failed to satisfactorily take account of significant strategic issues. Among these, the highway potential effect of inducing urban sprawl over water protection zones is the most critical issue, as it emerged later as a hurdle to project licensing. Conclusion is that, particularly where no agreed-upon framework for SEA exists, when vertical tiering with downstream project EIA is sought, then a careful scoping of strategic issues is more than necessary. If an agreement on `what is strategic` is not reached and not recognized by influential stakeholders, then the unsettled conflicts will be transferred to project EIA. In such a context, SEA will have added another loop to the usually long road to project approval. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (similar to 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Resumo:
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Epoxide hydrolases are multifunctional enzymes that are best known in insects for their role in juvenile hormone (JH) degradation. Enzymes involved in JH catabolism can play major roles during metamorphosis and reproduction, such as the JH epoxide hydrolase (JHEH), which degrades JH through hydration of the epoxide moiety to form JH diol, and JH esterase (JHE), which hydrolyzes the methyl ester to produce JH acid. In the honey bee, JH has been co-opted for additional functions, mainly in caste differentiation and in age-related behavioral development of workers, where the activity of both enzymes could be important for JH titer regulation. Similarity searches for jheh candidate genes in the honey bee genome revealed a single Amjheh gene. Sequence analysis, quantification of Amjheh transcript levels and Western blot assays using an AmJHEH-specific antibody generated during this study revealed that the AmJHEH found in the fat body shares features with the microsomal JHEHs from several insect species. Using a partition assay we demonstrated that AmJHEH has a negligible role in JH degradation, which, in the honey bee, is thus performed primarily by JHE. High AmJHEH levels in larvae and adults were related to the ingestion of high loads of lipids, suggesting that AmJHEH has a role in dietary lipid catabolism. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background Differences between women and men have been documented for both diagnostic testing and treatment in cardiology. This analysis evaluates whether low-density lipoprotein cholesterol (LDL-C) success rates according to current guidelines and high-density lipoprotein cholesterol (HDL-C) levels differ by gender in the L-TAP 2 population. Methods Patients aged >= 20 years with dyslipidemia on stable lipid-lowering therapy were assessed in 9 countries between September 2006 and April 2007. Low-density lipoprotein cholesterol goal attainment by cardiovascular risk level and region and determinants of low HDL-C were compared between genders. Results Of 9,955 patients (45.3% women) evaluated, women had a significantly lower overall LDL-C success rate than men (71.5% vs 73.7%, P = .014), due entirely to the difference in the high-risk/coronary heart disease (CHD) group (LDL-C goal <100 mg/dL, 62.6% vs 70.6%, P < .0001) Among CHD patients with >= 2 additional risk factors, only 26.7% of women and 31.5% of men (P = .021) attained the optional LDL-C goal of <70 mg/dL. High-density lipoprotein cholesterol was <50 mg/dL in 32.2% of women and <40 mg/dL in 26.8% of men (P < .0001), including 38.2% of women and 29.8% of men in the high risk/CHD group (P < .0001). Predictors of low HDL-C in women included diabetes, smoking, waist circumference, and hypertension. Conclusions Cholesterol treatment has, improved substantially since the original L-TAP a decade ago, when only 39% of women attained their LDL-C goal. However, high-risk women are undertreated compared to men, and a substantial opportunity remains to reduce their cardiovascular risk. (Am Heart J 2009; 158:860-6.)
Resumo:
Background-Information about physicians` adherence to cholesterol management guidelines remains scant. The present survey updates our knowledge of lipid management worldwide. Methods and Results-Lipid levels were determined at enrollment in dyslipidemic adult patients on stable lipid-lowering therapy in 9 countries. The primary end point was the success rate, defined as the proportion of patients achieving appropriate low-density lipoprotein cholesterol (LDL-C) goals for their given risk. The mean age of the 9955 evaluable patients was 62 +/- 12 years; 54% were male. Coronary disease and diabetes mellitus had been diagnosed in 30% and 31%, respectively, and 14% were current smokers. Current treatment consisted of a statin in 75%. The proportion of patients achieving LDL-C goals according to relevant national guidelines ranged from 47% to 84% across countries. In low-, moderate-, and high-risk groups, mean LDL-C was 119, 109, and 91 mg/dL and mean high-density lipoprotein cholesterol was 62, 49, and 50 mg/dL, respectively. The success rate for LDL-C goal achievement was 86% in low-, 74% in moderate-, and 67% in high-risk patients (73% overall). However, among coronary heart disease patients with >= 2 risk factors, only 30% attained the optional LDL-C goal of < 70 mg/dL. In the entire cohort, high-density lipoprotein cholesterol was < 40 mg/dL in 19%, 40 to 60 mg/dL in 55%, and > 60 mg/dL in 26% of patients. Conclusions-Although there is room for improvement, particularly in very-high-risk patients, these results indicate that lipid-lowering therapy is being applied much more successfully than it was a decade ago. (Circulation. 2009; 120: 28-34.)
Resumo:
The purpose of the present substudy of the Lipid Treatment Assessment Project 2 was to assess dual C-reactive protein (CRP) and low-density lipoprotein (LDL) cholesterol goal attainment across a spectrum of low-, moderate-, and high-risk patients with dyslipidemia in 8 countries in North America, Latin America, Europe, and Asia. Of the 9,518 patients studied overall, 45% were women, 64% had hypertension, 31% had diabetes, 14% were current smokers, 60% were high risk, and 79% were taking a statin. The median CRP level was 1.5 mg/L (interquartile range 0.2 to 2.8). On multivariate analysis, higher CRP levels were associated with older age, female gender, hypertension, current smoking, greater body mass index, larger waist circumference, LDL cholesterol level, and triglyceride/high-density lipoprotein cholesterol ratio. In contrast, being from Asia or taking a statin was associated with lower levels. Across all risk groups, 59% of patients attained the CRP target of <2 mg/L, and 33% had <1 mg/L. Overall, 44% of patients attained both their National Cholesterol Education Program Adult Treatment Panel III LDL cholesterol target and a CRP level of <2 mg/L, but only 26% attained their LDL cholesterol target and a CRP level of <1 mg/L. In the very high-risk group with coronary heart disease and >= 2 risk factors, only 19% attained both their LDL cholesterol goal and a CRP level of <2 mg/L and 12% their LDL cholesterol goal and a CRP level of <1 mg/L. In conclusion, with current treatment, most dyslipidemic patients do not reach the dual CRP and LDL cholesterol goals. Smoking cessation, weight reduction, and the greater use of more potent statins at higher doses might be able to improve these outcomes. (C) 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;107:1639-1643)
Resumo:
Objective: This analysis of the Lipid Treatment Assessment Project 2 population compared lipid goal attainment by diabetes and metabolic syndrome status. Research design and methods: Dyslipidaemic patients aged >= 20 years on stable lipid lowering therapy had their lipid levels determined once during enrolment at investigation sites in nine countries between September 2006 and April 2007. Achievement of low-density lipoprotein (LDL) cholesterol success, triglycerides < 150 mg/dl (1.7 mmol/l), and high-density lipoprotein (HDL) cholesterol success (> 40 mg/dl [1.0 mmol/l] in men or > 50 mg/dl [1.3 mmol/l] in women) was compared using logistic regression. Results: A total of 9955 patients were evaluated. Patients with diabetes, compared with those without diabetes, had lower achievement of LDL cholesterol goals (according to National Cholesterol Education Program Adult Treatment Panel [NCEP ATP] III guidelines; 67% vs. 75%), triglycerides < 150 mg/dl (55% vs. 64%), and HDL cholesterol success (61% vs. 74%; p < 0.0001 for all comparisons). The significantly lower lipid goal attainment in patients with diabetes was consistent across participating world regions. Patients with metabolic syndrome, compared with those without metabolic syndrome, had lower achievement of NCEP ATP III LDL cholesterol goals (69% vs. 76%), triglycerides < 150 mg/dl (36% vs. 83%), and HDL cholesterol success (49% vs. 89%; p < 0.0001 for all comparisons). As the number of metabolic syndrome components increased, lipid success rates progressively decreased (p < 0.0001 for LDL cholesterol success, triglycerides < 150 mg/dl, and HDL cholesterol success). Conclusions: This analysis indicates that despite their increased cardiovascular risk, patients with diabetes or metabolic syndrome remain undertreated.
Resumo:
Background Meta-analysis is increasingly being employed as a screening procedure in large-scale association studies to select promising variants for follow-up studies. However, standard methods for meta-analysis require the assumption of an underlying genetic model, which is typically unknown a priori. This drawback can introduce model misspecifications, causing power to be suboptimal, or the evaluation of multiple genetic models, which augments the number of false-positive associations, ultimately leading to waste of resources with fruitless replication studies. We used simulated meta-analyses of large genetic association studies to investigate naive strategies of genetic model specification to optimize screenings of genome-wide meta-analysis signals for further replication. Methods Different methods, meta-analytical models and strategies were compared in terms of power and type-I error. Simulations were carried out for a binary trait in a wide range of true genetic models, genome-wide thresholds, minor allele frequencies (MAFs), odds ratios and between-study heterogeneity (tau(2)). Results Among the investigated strategies, a simple Bonferroni-corrected approach that fits both multiplicative and recessive models was found to be optimal in most examined scenarios, reducing the likelihood of false discoveries and enhancing power in scenarios with small MAFs either in the presence or in absence of heterogeneity. Nonetheless, this strategy is sensitive to tau(2) whenever the susceptibility allele is common (MAF epsilon 30%), resulting in an increased number of false-positive associations compared with an analysis that considers only the multiplicative model. Conclusion Invoking a simple Bonferroni adjustment and testing for both multiplicative and recessive models is fast and an optimal strategy in large meta-analysis-based screenings. However, care must be taken when examined variants are common, where specification of a multiplicative model alone may be preferable.
Resumo:
Molecular epidemiological data concerning the hepatitis B virus (HBV) in Chile are not known completely. Since the HBV genotype F is the most prevalent in the country, the goal of this study was to obtain full HBV genome sequences from patients infected chronically in order to determine their subgenotypes and the occurrence of resistance-associated mutations. Twenty-one serum samples from antiviral drug-naive patients with chronic hepatitis B were subjected to full-length PCR amplification, and both strands of the whole genomes were fully sequenced. Phylogenetic analyses were performed along with reference sequences available from GenBank (n = 290). The sequences were aligned using Clustal X and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted by Markov Chain Monte Carlo simulations (MCMC) for 10 million generations in order to obtain the substitution tree using BEAST. The sequences were also analyzed for the presence of primary drug resistance mutations using CodonCode Aligner Software. The phylogenetic analyses indicated that all sequences were found to be the HBV subgenotype F1b, clustered into four different groups, suggesting that diverse lineages of this subgenotype may be circulating within this population of Chilean patients. J. Med. Virol. 83: 1530-1536, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Background This study describes heat- and cold-related mortality in 12 urban populations in low- and middle-income countries, thereby extending knowledge of how diverse populations, in non-OECD countries, respond to temperature extremes. Methods The cities were: Delhi, Monterrey, Mexico City, Chiang Mai, Bangkok, Salvador, So Paulo, Santiago, Cape Town, Ljubljana, Bucharest and Sofia. For each city, daily mortality was examined in relation to ambient temperature using autoregressive Poisson models (2- to 5-year series) adjusted for season, relative humidity, air pollution, day of week and public holidays. Results Most cities showed a U-shaped temperature-mortality relationship, with clear evidence of increasing death rates at colder temperatures in all cities except Ljubljana, Salvador and Delhi and with increasing heat in all cities except Chiang Mai and Cape Town. Estimates of the temperature threshold below which cold-related mortality began to increase ranged from 15 degrees C to 29 degrees C; the threshold for heat-related deaths ranged from 16 degrees C to 31C. Heat thresholds were generally higher in cities with warmer climates, while cold thresholds were unrelated to climate. Conclusions Urban populations, in diverse geographic settings, experience increases in mortality due to both high and low temperatures. The effects of heat and cold vary depending on climate and non-climate factors such as the population disease profile and age structure. Although such populations will undergo some adaptation to increasing temperatures, many are likely to have substantial vulnerability to climate change. Additional research is needed to elucidate vulnerability within populations.
Resumo:
Rapid evolution and high intrahost sequence diversity are hallmarks of human and simian immunodeficiency virus (HIV/SIV) infection. Minor viral variants have important implications for drug resistance, receptor tropism, and immune evasion. Here, we used ultradeep pyrosequencing to sequence complete HIV/SIV genomes, detecting variants present at a frequency as low as 1%. This approach provides a more complete characterization of the viral population than is possible with conventional methods, revealing low-level drug resistance and detecting previously hidden changes in the viral population. While this work applies pyrosequencing to immunodeficiency viruses, this approach could be applied to virtually any viral pathogen.