176 resultados para Frozen storage stability
Resumo:
Dentin bonding performed with hydrophobic resins using ethanol-wet bonding should be less susceptible to degradation but this hypothesis has never been validated. Objectives. This in vitro study evaluated stability of resin-dentin bonds created with an experimental three-step BisGMA/TEGDMA hydrophobic adhesive or a three-step hydrophilic adhesive after one year of accelerated aging in artificial saliva. Methods. Flat surfaces in mid-coronal dentin were obtained from 45 sound human molars and randomly divided into three groups (n = 15): an experimental three-step BisGMA/TEGDMA hydrophobic adhesive applied to ethanol (ethanol-wet bonding-GI) or water-saturated dentin (water-wet bonding-GII) and Adper Scotchbond Multi-Purpose [MP-GIII] applied, according to manufacturer instructions, to water-saturated dentin. Resin composite crowns were incrementally formed and light-cured to approximately 5 mm in height. Bonded specimens were stored in artificial saliva at 37 degrees C for 24h and sectioned into sticks. They were subjected to microtensile bond test and TEM analysis immediately and after one year. Data were analyzed with two-way ANOVA and Tukey tests. Results. MP exhibited significant reduction in microtensile bond strength after aging (24 h: 40.6 +/- 2.5(a); one year: 27.5 +/- 3.3(b); in MPa). Hybrid layer degradation was evident in all specimens examined by TEM. The hydrophobic adhesive with ethanol-wet bonding preserved bond strength (24 h: 43.7 +/- 7.4(a); one year: 39.8 +/- 2.7(a)) and hybrid layer integrity, with the latter demonstrating intact collagen fibrils and wide interfibrillar spaces. Significance. Coaxing hydrophobic resins into acid-etched dentin using ethanol-wet bonding preserves resin-dentin bond integrity without the adjunctive use of MMPs inhibitors and warrants further biocompatibility and patient safety`s studies and clinical testing. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To evaluate the effects of surface moisture (wet or dry) and storage (24h or 3 months) on the microtensile bond strength (BS) of resin/dentin bonds mediated by two water/ethanol based adhesives Single Bond, 3M-ESPE, (SB) and Opti Bond Solo Plus, Kerr, (OB), and two acetone-based adhesives, One Step, Bisco, (OS) and Prime&Bond NT, Caulk/Dentsply, (PB). Materials and methods. Flat dentin surfaces were polished with 600-grit SiC paper, etched with 35% phosphoric acid for 15 s and rinsed for 20 s. Half the surface was maintained moist and the other half was air-dried for 30 s. Each adhesive was applied simultaneously to both halves, left undisturbed for 30 s and light-cured. Four-mm resin build-ups were constructed incrementally. After storage in water at 37 degrees C for 24h, slabs were produced by transversal sectioning and trimmed to an hourglass shape (0.8 mm 2). Half of the specimens were tested in tension at 0.6 mm/min immediately after trimming and the other half after 3 months of water storage. Data were analyzed by two-way ANOVA and SNK for each material. Results. Both moisture and storage affected BS to dentin, and was material- dependent. Dry, bonding affected mostly the acetone-based adhesives. Larger reductions in bond strength were associated with dry bonding after 3 months of water storage. Significance. Wet bonding resulted in more stable bonds over 3 months of water storage for most of the materials tested. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the effects of storage condition and duration on the resistance to fracture of different fiber post systems (and to morphologically assess the post structure before and after storage. Methods: Three types of fiber posts (DT Light Post, GC Post, FRC Postect Plus) were divided in different groups (n=12) according to the storage condition (dry at 37 degrees C; saline water at 37 degrees C; mineral oil at 37 degrees C and storage inside the roots of extracted human teeth immersed in saline water at 37 degrees C and duration (6, 12 months). A universal testing machine loading at a 90 degrees angle was employed for the three-point bending test. The test was carried out until fracture of the post. A 3-way ANOVA and Tukey`s test (alpha= 0.05) were used to compare the effect of the experimental factors on the fracture strength. Two posts of each group were observed before and after the storage using a scanning electron microscope. Results: Storage condition and post type had a significant effect on post fracture strength (P< 0.05). The interaction between these factors was significant (P< 0.05). Water storage significantly decreased the fracture strength, regardless of the post type and the storage duration. Storage inside roots, in oil, and at dry conditions did not significantly affect post fracture strength. SEM micrographs revealed voids between fibers and resin matrix for posts stored in water. Posts stored under the other conditions showed a compact matrix without porosities. (Am J Dent 2009;22:366-370).
Resumo:
The objective of this study was to evaluate the effects of diet supplementation with vitamin E on the physical and chemical characteristics of ground, frozen and stored or aged Quadriceps femoris (QF) and Longissimus dorsi (LD) muscles from Nellore steers fed high concentrate diets. Muscles were obtained from 24 animals that were 30 months old with a mean live weight of 279 kg. Half of the animals received daily doses of 1,000 mg of alpha-tocopherol acetate (VIT E) per head per day that was added to 100 g of corn meal. The other half received 100 g of corn meal without the antioxidant. Twenty-four hours after slaughtering, QF samples from each animal were ground, frozen and stored for up to 6 months. In addition, 4 samples from the LD of each animal were vacuum packed individually and kept for 21 days. All samples were analyzed to determine the pH, color and water-holding-capacity. The VIT E supplementation improved only the water loss characteristics of frozen ground QF and did not have any positive effect on the physical-chemical characteristics of the aged LD.
Resumo:
Camu-camu is a tropical fruit with very high vitamin C content and commercialized as frozen pulp. Enthalpies of freezing, temperatures of the onset of ice melting, and glass transition temperatures of the maximally freeze-concentrated phase (T`(g)) of camu-camu pulp and of samples containing maltodextrin (DE20) and sucrose were measured by differential scanning calorimetry. Maltodextrin exhibited the largest freeze stabilization potential, increasing T`(g) from -58.2 degrees C (natural pulp) to -39.6 degrees C when 30% (w/w) maltodextrin DE 20 was added. Sucrose showed negligible effect on T`(g) but enhanced considerably the freezing point depression and less amount of ice was formed.
Resumo:
The recovery and stability of DNA for the detection and genotyping of HPV in UCM-containing specimens, after exposure to denaturing reagents and stored for up to 2 years were evaluated. Samples were collected from 60 women who had cervical cytology specimens harboring cervical intraepithelial neoplasia (CIN) 2 or 3. All samples were stored in UCM and had been frozen at -20 degrees C following the addition of the denaturing reagent (sodium hydroxide) and the removal of the aliquot required for Hybrid Capture 2 testing for the identification of HPV DNA. The samples had been stored for 6, 12 and 24 months (20 samples for each storage time). HPV DNA extraction was performed according to a protocol designed specifically and the presence and quality of DNA was confirmed by human P-globin detection using the consensus primers G73 and G74. HPV DNA was amplified using the consensus primers PGMY09 and PGMY11, and reverse line-blot hybridization was used to detect type-specific amplicons for 37 HPV types. The DNA extracted from the denatured specimen was recovered in 57/60 (95%) of the samples. HPV DNA was detected in 56/57 (98%) of the recovered samples. Twenty-six of the 56 samples recovered (48%) were genotyped successfully. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper demonstrates the application of thermal analysis in compatibility and stability studies between it ACE inhibitor (enalapril maleate) and excipients. The results have helped to elucidate the reason of a stability problem observed (luring the storage of enalapril maleate tablets. Incompatibility between enalapril maleate and colloidal silicon dioxide was detected. Besides, it was confirmed that the reaction between enalapril maleate and NaHCO3 increases the thermal stability of the drug. This Study Supports the importance of using thermoanalytical methods in the development of pharmaceuticals.
Resumo:
This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers’ instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.
Resumo:
OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.
Resumo:
OBJECTIVE: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. MATERIAL AND METHODS: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). RESULTS: High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - ΔE=2.05; XL 3000 - ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. CONCLUSION: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.
Resumo:
Accurate iris reproduction in the fabrication of ocular prosthesis in order to match the remaining eye is a key factor to mask the loss and achieve an esthetic outcome for anophthalmic patients. This study evaluated the stability of acrylic paints used for replicating iris color in ocular prostheses by the analysis of two factors: the temperature of the acrylic resin polymerization cycle during prosthesis fabrication and the incidence of sun light, which is the main photodegrading agent undermining the longevity of ocular prostheses. An accelerated aging assay was used for both analyses. Specimens simulating the prosthetic iris in the colors blue, yellow, black, brown and green were fabricated, and were submitted to a colorimetric reading before and after undergoing the thermal conditions of acrylic resin polymerization. Next, the specimens were submitted to an artificial accelerated aging assay with ultraviolet radiation A and weekly colorimetric readings during a 3-week period. The color change (??*) values for the four specimens painted with the same color paint were averaged and the resulting values were considered for statistical analysis. Levine's test and Student's t-test were used to analyze the influence of the temperature of the polymerization cycle during prosthesis fabrication on the color stability of each acrylic resin paint. Friedman's test for three dependent samples was used for analysis of color photodegradation as function of time. Significance level was set at 0.05 for all analyses. It was observed that, after the action of the temperature of the polymerization cycle, alteration above clinically acceptable level of ??*> 3.3 was observed only for the yellow color. After the accelerated aging assay, there were statistically significant differences (p<0.05) as a function of time in the green, brown, black and blue colors. Changes were clinically acceptable for the brown and black colors; slightly above the clinically acceptable limit for the green color; and significantly high and impracticable from a clinical standpoint for the blue color. There was no statistically significant differences (p>0.05) for the yellow color, which presented color change only a little above the clinically acceptable limit. In conclusion: 1. Only the yellow color presented alterations above the clinically acceptable levels after the polymerization cycle; 2. After accelerated aging, there was no changes in the yellow color above the clinically acceptable levels; 3. For the green color, degradation was significant and slightly above the clinically acceptable levels; 4. The black, brown and blue colors presented significant alterations as function of time; the alterations of the brown and black colors were within acceptable clinical levels, while the blue color presented a more accentuated degradation over time.
Resumo:
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 ºC) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 ºC (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 ºC, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 ºC. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Resumo:
Filleting yield of Nile tilapia Oreochromis niloticus (L.) is low (30%) and generates large amount of wastes that may turn into environmental and economic problem. However, these wastes can be used for the extraction of minced fish (MF) which can be used in the preparation of sausages. The objective of this study was to assess the quality of sausages prepared with 0, 20, 40, 60, 80 and 100% of MF from Nile tilapia filleting waste during storage at 0±0.3ºC. Alterations in the instrumental color (L*, a* and b*), lipid oxidation (TBARS), total volatile nitrogenous bases (TVB-N), pH, microbiological condition (pathogenic bacteria and aerobic psychrotrophic bacteria), and sensory attributes (color, odor, flavor, texture and overall acceptability) were evaluated for up to 40 days. The addition of MF to sausages increased TBARS values and decreases TVB-N, L*, a* and b* values. Acceptability of color attribute decreased with increasing MF; best flavor, texture and overall acceptability scores were registered for sausages containing 40 and 60% MF; best odor was registered for 100% MF. Pathogenic microorganisms were not detected, but decrease in pH and proliferation of aerobic psychrotrophic bacteria which, however, did not compromise sensory evaluation of sausages were registered throughout storage. Sausages prepared with MF from tilapia filleting waste have a shelf-life of 40 days when stored at 0±0.3ºC, and the maximum recommended MF inclusion to maintain good sensory quality is 60%.
Resumo:
Effective incorporation of a probiotic into foods requires the culture to remain viable all along processing and storage, without adverse alterations to sensory characteristics. The objective of this work was developing Minas-type fresh cheese with probiotic properties from buffalo milk. Four batches of Minas-type fresh cheese were prepared using buffalo milk: batch T1 in which neither culture nor lactic acid added; batch T3 in which only lactic acid added; batches T2 and T4 , both added of Lactobacillus acidophilus LAC 4, but T4 was also acidified. Resulting cheeses were evaluated for probiotic culture stability, texture profile, sensory acceptance, and changes in pH. The T4 probiotic cheese presented hardness, gumminess, and chewiness significantly lower than the other treatments. However, values for springiness and cohesiveness did not differ between all cheeses, and no sensory differences (p > 0.05) were found between treatments for texture, taste, and overall acceptance. The addition of probiotic to the acidified cheese (T4) yielded best aroma. The populations of L. acidophilus were greater than 10(6) CFU g-1 after 28 days of storage all products. Minas-type fresh cheese from buffalo milk is a suitable food for the delivery of L. acidophilus, since the culture remained viable during the shelf life of the products and did not negative affect analysed parameters.
Resumo:
Este estudo teve como objetivo avaliar a influência da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio na estabilidade de Carne Mecanicamente Separada (CMS) de tilápia de Nilo (Oreochromis niloticus) durante 6 meses de armazenamento a -18 ºC. A CMS obtida por meio de máquina separadora de carne e ossos foi dividida em quatro tratamentos (CMS lavada com e sem aditivos, e CMS não lavada com e sem aditivos) e mantida sob congelamento a -18 ºC, por 180 dias. A estabilidade foi avaliada por meio de análises microbiológicas e determinações de nitrogênio não proteico (NNP), bases nitrogenadas voláteis (BNV), substâncias reativas ao ácido tiobarbitúrico (TBARS), pH e drip (perda de água no descongelamento). O processo de lavagem causou redução de aproximadamente 41, 44 e 66% nos teores de proteína bruta, lipídios e cinzas, respectivamente, reduzindo também os valores iniciais de NNP, BNV e TBARS. Durante o armazenamento, foram observados aumentos (p < 0,05) nos teores de NNP, BNV e pH em praticamente todos os tratamentos, exceto na CMS lavada com aditivos, que não apresentou aumentos significativos nos teores de NNP e pH. O uso de aditivos nas CMS diminuiu o drip ao longo do armazenamento, mas não alterou (p > 0,05) os teores de TBARS. Os parâmetros microbiológicos avaliados não ultrapassaram os limites permitidos pela legislação. As CMS permaneceram estáveis e em boas condições de utilização, independentemente da inclusão de aditivo, sendo viável sua estocagem a -18 ºC por 180 dias.