57 resultados para Freshwater fishes -- Ecology
Resumo:
Soil from the Amazonian region is usually regarded as unsuitable for agriculture because of its low organic matter content and low pH; however, this region also contains extremely rich soil, the Terra Preta Anthrosol. A diverse archaeal community usually inhabits acidic soils, such as those found in the Amazon. Therefore, we hypothesized that this community should be sensitive to changes in the environment. Here, the archaeal community composition of Terra Preta and adjacent soil was examined in four different sites in the Brazilian Amazon under different anthropic activities. The canonical correspondence analysis of terminal restriction fragment length polymorphisms has shown that the archaeal community structure was mostly influenced by soil attributes that differentiate the Terra Preta from the adjacent soil (i.e., pH, sulfur, and organic matter). Archaeal 16S rRNA gene clone libraries indicated that the two most abundant genera in both soils were Candidatus nitrosphaera and Canditatus nitrosocaldus. An ammonia monoxygenase gene (amoA) clone library analysis indicated that, within each site, there was no significant difference between the clone libraries of Terra Preta and adjacent soils. However, these clone libraries indicated there were significant differences between sites. Quantitative PCR has shown that Terra Preta soils subjected to agriculture displayed a higher number of amoA gene copy numbers than in adjacent soils. On the other hand, soils that were not subjected to agriculture did not display significant differences on amoA gene copy numbers between Terra Preta and adjacent soils. Taken together, our findings indicate that the overall archaeal community structure in these Amazonian soils is determined by the soil type and the current land use.
Resumo:
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.
Resumo:
In this paper we report findings on the presence of circadian rhythms in six species of cave-dwelling fishes from Brazil. Locomotor activity of islolated individuals was automatically recorded for 10 consecutive days under constant darkness. The species tested show varied degrees of specialization to subterranean life and we found varying degrees of the circadian components of locomotor activity as measured by the periodogram algorhythm of Lomb-Scargle. Both the presence and robustness of the circadian components seem to vary according to the degree of specialization to subterranean life, the more specialized, the less circadian rhythmicity was detected.
Resumo:
The introduction of allochthonous fish species happens constantly in large bodies of freshwater, like as the reservoirs of Parana Basin, located in Brazilian southeast, representing a threat for local biodiversity. The fish species Plagioscion squamosissimus and Cichla ocellaris were introduced from the 1970s in several water bodies of this basin and had successfully established themselves in all six reservoirs located in the middle and lower Tiete River (SP, Brazil), particularly. After six decades from the first recorded species introduction, this hydrographic system remains open to the invasion of further fish species, owing to widespread fish-farming activity and by the channels opened between this system and other reservoirs and river basin. This study was an effort to confirm the Geophagus proximus occurrence in the six Tiete River reservoirs, verifying the actual introduction status and analyzing its potential environmental impacts on local species by the analysis of the population structure (abundance, body dimensions and feeding habits). By the results, this species was confirmed in the Ibitinga, Nova Avanhandava and Tres Irmaos reservoirs. The abundance and feeding analysis shows, respectively, it is successfully established in the Tres Irmaos reservoir with the same feeding habitats of local species, such as Geophagus brasiliensis. It was further shown to be very likely that G. proximus would spread throughout the reservoir system of the middle and lower Tiete River, in the manner of P. squamosissimus and C. ocellaris, and the competition pressure for food resources between G. proximus and the local species which represents a potential environmental impact system. These scientific evidences fortifies the knowledge basin for the implantation of a fish management system, to control and reduce the abundance of the invader and to prevent its becoming established in all the Tiete River Basin, avoiding the disastrous consequences for the native species of Parana River Basin.
Resumo:
The accumulation of saxitoxins (STXs) in fish from freshwater aquaculture was investigated for the first time in the present study. Cyanotoxins have been monitored in liver and muscle samples of Oreochromis miloticus by chromatographic methods, both before and after the deputation process. The results show that tilapia can accumulate STXs. Our findings suggest that deputation with clean water is an alternative process to eliminate STXs from fish and, therefore, improve the safety of tilapia for consumers. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis x Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.
Resumo:
The rhizosphere is an ecosystem exploited by a variety of organisms involved in plant health and environmental sustainability. Abiotic factors influence microorganism-plant interactions, but the microbial community is also affected by expression of heterologous genes from host plants. In the present work, we assessed the community shifts of Alphaproteobacteria phylogenetically related to the Rhizobiales order (Rhizobiales-like community) in rhizoplane and rhizosphere soils of wild-type and transgenic eucalyptus. A greenhouse experiment was performed and the bacterial communities associated with two wild-type (WT17 and WT18) and four transgenic (TR-9, TR-15, TR-22, and TR-23) eucalyptus plant lines were evaluated. The culture-independent approach consisted of the quantification, by real-time polymerase chain reaction (PCR), of a targeted subset of Alphaproteobacteria and the assessment of its diversity using PCR-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Real-time quantification revealed a lesser density of the targeted community in TR-9 and TR-15 plants and diversity analysis by principal components analysis, based on PCR-DGGE, revealed differences between bacterial communities, not only between transgenic and nontransgenic plants, but also among wild-type plants. The comparison between clone libraries obtained from the transgenic plant TR-15 and wild-type WT17 revealed distinct bacterial communities associated with these plants. In addition, a culturable approach was used to quantify the Methylobacterium spp. in the samples where the identification of isolates, based on 16S rRNA gene sequences, showed similarities to the species Methylobacterium nodulans, Methylobacterium isbiliense, Methylobacterium variable, Methylobacterium fujisawaense, and Methylobacterium radiotolerans. Colonies classified into this genus were not isolated from the rhizosphere but brought in culture from rhizoplane samples, except for one line of the transgenic plants (TR-15). In general, the data suggested that, in most cases, shifts in bacterial communities due to cultivation of transgenic plants are similar to those observed when different wild-type cultivars are compared, although shifts directly correlated to transgenic plant cultivation may be found.
Resumo:
Information on nutritional requirement of some Brazilian farmed fish species, especially essential amino acids (EAA) requirements, is scarce. The estimation of amino acids requirements based on amino acid composition of fish is a fast and reliable alternative. Matrinxa, Brycon amazonicus, and curimbata, Prochilodus lineatus, are two important Brazilian fish with potential for aquaculture. The objective of the present study was to estimate amino acid requirements of these species and analyze similarities among amino acid composition of different fish species by cluster analysis. To estimate amino acid requirement, the following formula was used: amino acid requirement = [(amount of an individual amino acid in fish muscle tissue) x (average totalEAA requirement among channel catfish, Ictalurus punctatus, Nile tilapia, Oreochromis niloticus, and common carp, Cyprinus carpio)]/(average fish muscle totalEAA). Most values found lie within the range of requirements determined for other omnivorous fish species, in exception of leucine requirement estimated for both species, and arginine requirement estimated for matrinxa alone. Rather than writing off the need for regular dose-response assays under the ideal protein concept to determine EAA requirements of curimbata and matrinxa, results set solid base for the study of tropical species dietary amino acids requirements.
Resumo:
The symbiotic lifestyle is widespread among porcellanid crabs, which maintain ecological and co-evolutionary associations with annelid polychaetes, poriferans, cnidarians, echinoderms, gastropod. mollusks, and other crustaceans such as shrimps and hermit crabs, among others. We investigated the ecological association between the hermit crab Dardanus insignis and the porcellanid Porcellana sayana, in southeastern Brazil. Porcellanid crabs, hermit crabs, and available shells were collected monthly from July 2001 to June 2003, with a shrimp boat equipped with two double-rig trawl nets. The majority of P. sayana specimens were collected in shells occupied by D. insignis (96.6%); a few were found in empty shells (3.4%). The catch of both symbionts and hosts increased with increasing depth, with the highest occurrence at 35 m. The F. sayana crabs of various sizes could be found solitary or forming aggregations of up to 14 individuals per host, showing no sex or size segregation. In spite of the high diversity of shell species occupied by the hermit crabs and also available in the field, only a few of them were also utilized by P. sayana. The majority (93%) of shells utilized by P. sayana also hosted other symbiont species, constituting the basis of extensive symbiotic complexes. Thus, the ecological relationship between D. insignis and P. sayana may be classified as a non-obligate and non-specific symbiosis that may also involve other facultative organisms such as sea anemones. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
To better understand the biochemical mechanisms underlying anisosmotic extracellular regulation in the freshwater Brachyura, we kinetically characterized the V-ATPase from the posterior gills of Dilocarcinus pagei, acclimated for 10 days to salinities up to 21%.. Specific activity was highest in fresh water (26.5 +/- 2.1 U mg(-1)), decreasing in 5 parts per thousand to 21 parts per thousand, attaining 3-fold less at 15 parts per thousand. Apparent affinities for ATP and Mg(2+) respectively increased 3.2- and 2-fold at 10 parts per thousand, suggesting expression of different isoenzymes. In a 240-h time-course study of exposure to 21%., maximum specific activity decreased 2.5- to 4-fold within 1 to 24 h while apparent affinities for ATP and Mg(2+) respectively increased by 12-fold within 24 h and 2.4-fold after 1 h, unchanged thereafter. K(I) for bafilomycin A(1) decreased 150-fold after 1 h, remaining constant up to 120 h. This is the first kinetic analysis of V-ATPase specific activity in crustacean gills during salinity acclimation. Our findings indicate active gill Cl(-) uptake by D. pagei in fresh water, and short- and long-term down-regulation of V-ATPase-driven ion uptake processes during salinity exposure, aiding in comprehension of the biochemical adaptations underpinning the establishment of the Brachyura in fresh water. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Pagurus exilis (Benedict, 1892) is an endemic South Atlantic hermit crab with a distribution ranging from Rio de Janeiro State, Brazil, to Buenos Aires Province, Argentina. The present study analyzed the reproduction of two populations at the extremes of this geographical distribution, and compared their reproductive period, fecundity, and changes in egg size and egg volume during the incubation period in order to assess the variability over this latitudinal range. Hermit crabs were collected monthly over a 2-year period. In total, 108 females were analyzed for Brazil (44 non-ovigerous and 64 ovigerous), and 141 for Argentina (87 non-ovigerous and 54 ovigerous). Reproduction in Brazil occurs year-round, with peaks in the fall and winter seasons; in Argentina reproduction occurs only in spring and summer. The Brazilian ovigerous females were significantly larger than the Argentina ones (Brazil: SL = 5.33 +/- 1.45 mm; Argentina: SL = 4.15 +/- 0.52 mm; P < 0.001). The fecundity was 1447 +/- 831 eggs (317 to 2885) in Brazil and 987 +/- 711 eggs (114 to 2665) in Argentina, with a trend towards higher fecundity in Brazil. Eggs in the Argentina population were larger than those in Brazil for all the three stages investigated, and no changes in egg volume were found during egg development for both populations. The reproductive traits of the two populations showed some important differences, which may reflect adaptations to local environmental conditions, demonstrating a high plasticity of reproductive features of the species in Brazilian and Argentine waters. The strategy adopted by the Argentina population involves a lower production of larger eggs compared to the population in Brazil; this lower production is associated with reproduction in cold-water regions.
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Hippolyte obliquimanus is a small, gonochoric shrimp found in algal substrates along the western Atlantic coast of Brazil, particularly in association with seaweed of the genus Sargassum. We studied population features (sexual ratio, reproductive period and temporal distribution) of H. obliquimanus in southeastern Brazil, including its relationships with the seasonality of banks of this alga. Specimens were collected at two-monthly intervals from March 2005 to January 2006, in Ubatuba Bay. The sex of individuals was checked, and the carapace length measured. In total, 668 individuals were collected: 211 males (0.70-2.50 mm carapace length), 341 non-ovigerous females (0.55-2.90 mm), and 116 ovigerous females (1.55-3.20 mm). Hippolyte obliquimanus showed seasonal-continuous reproduction and variable continuous recruitment. The highest number of animals (75%) was collected in fall-winter. The percentages of ovigerous females/total females (fall-winter: 27%; spring-summer: 26%) and the sexual ratio (fall-winter: 31%; spring-summer: 32%) were practically equal in both periods. The sexual ratio showed a predominance of females in almost all size classes, and we detected a new sex ratio pattern for this species. The seasonal variation in the number of individuals can be related to its migration to deeper areas, due to the decrease in the abundance of Sargassum sp. in shallower waters in spring-summer.
Resumo:
The genus Macrobrachium Bate, 1868 is one of the best examples of widespread crustacean genera distributed globally throughout tropical and subtropical waters. Previous investigators have noted the systematic complexity of the group, and have suggested rearrangements within the family Palaemonidae. Our phylogenetic analysis of new mitochondrial DNA sequences of 58 species of Macrobrachium distributed mainly in America support the hypothesis of monophyly of this genus, if Cryphiops Dana, 1852 is accepted as a generic synonym. We concluded that the independent evolution of different types of life cycle (abbreviated larval development-ALD and extended larval development-ELD) must have occurred more than once in the history of the group. Similarly, we also concluded that the current type species of the genus, Macrobrachium americanum Bate, 1868, should not be considered valid, as previously proposed. The synonymy of two members of the `olfersi` species complex (M. birai Lobao, Melo&Fernandes, 1986 and M. holthuisi Genofre&Lobao, 1978) with M. olfersi (Wiegmann, 1836) was confirmed. Similar results were found in comparing M. petronioi Melo, Lobao&Fernandes, 1986 and M. potiuna (Muller, 1880), in which the genetic divergence placed M. petronioi within the level of intraspecific variation of M. potiuna. The taxonomic status of the genus Cryphiops, as well as theories on the origin of Macrobrachium, is also called into question.
Resumo:
We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, Sao Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6 mu g MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus. (C) 2009 Elsevier Ltd. All rights reserved.