157 resultados para Finite Temperature
Resumo:
In order to evaluate the effect of environmental temperature on ruminal fermentation and on mineral levels of growing ruminants, it was used 12 male calves (initial average weight 82.9 ± 7.7 kg, 100 days of age), were employed in a randomized block design (by weight) experiment, with repeated weight measurement and two environmental temperatures: thermoneutral (24ºC) and heat-stressed (33ºC), during 38 days. The animals exposed to 33ºC presented lower dry matter ingestion, lower T3 (triiodothyronine) serum level, higher ammoniacal nitrogen (NH3-N) level in the rumen liquid, and higher rectal and body temperatures during all the experimental period when compared to the animals kept in thermoneutral environment (24ºC). The animals kept under heat stress environment (33ºC) presented higher calcium serum level, which was the highest on 31st day and the lowest on the 38th day of the experiment; phosphorus level was the lowest during all the experimental period; sodium level was lower on the 17th, 31st and 38th experimental days. Potassium and zinc levels were lower after 24 days; copper level was lower until the 24th day; magnesium level was higher until the 17th day, if compared to the ones from the animals kept in thermoneutral environment (24ºC). The heat-stressed animals presented higher levels of ammoniacal nitrogen in the ruminal liquid and a decrease in the phosphorus, sodium, potassium and zinc serum levels. These results show the necessity of changes on feed management to ruminants in temperatures over the thermal comfort limits so that performance loss is decreased.
Resumo:
The objective of the present study was to evaluate the effects of light and temperature on germination of Cereus pernambucensis seeds, a species of columnar cactus native to Brazil and naturally incident in the restinga. Cereus pernambucensis seeds were incubated under different temperatures, from 5 to 45 °C, with 5 °C intervals, and under alternating temperatures of 15-20 °C, 15-30 °C, 20-25 °C, 20-30 °C, 20-35 °C, 25-30 °C, 25-35 °C, and 30-35 °C, both under continuous white light and dark. The seeds were also incubated in a gradient of phytochrome photoequilibrium at 25 °C. The highest percentage germination in this species was between 25 and 30 °C. The minimum temperature was between 15 and 20 °C and the maximum between 35 and 40 °C. Alternating temperatures did not affect the percentage of seed germination, but it did alter the rate and synchronization indexes. Seeds incubated in the dark did not germinate under any of the conditions tested, indicating that this species when cultivated present light sensitive seeds controlled by phytochrome. The seeds can tolerate a lot of shade conditions, germinating under very low fluence response of phytochrome.
Resumo:
The tolerance to the combined effects of temperature and salinity was investigated in the interstitial isopod Coxicerberus ramosae (Albuquerque, 1978), a species of intertidal zone of sandy beaches in Rio de Janeiro, Brazil. The animals were collected on Praia Vermelha Beach. The experiments lasted 24 h and nine salinities and seven temperatures were used for a total of 63 combinations. Thirty animals were tested in each combination. The species showed high survival in most of the combinations. The temperature of 35 ºC was lethal and at 5 ºC, the animals tolerated only a narrow range of salinities. The statistical analyses showed that the effects of temperature and salinity were significant on the survival, which confirmed the euryhalinity and eurythermy of this species.
Resumo:
PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.
Resumo:
In this work we report on a comparison of some theoretical models usually used to fit the dependence on temperature of the fundamental energy gap of semiconductor materials. We used in our investigations the theoretical models of Viña, Pässler-p and Pässler-ρ to fit several sets of experimental data, available in the literature for the energy gap of GaAs in the temperature range from 12 to 974 K. Performing several fittings for different values of the upper limit of the analyzed temperature range (Tmax), we were able to follow in a systematic way the evolution of the fitting parameters up to the limit of high temperatures and make a comparison between the zero-point values obtained from the different models by extrapolating the linear dependence of the gaps at high T to T = 0 K and that determined by the dependence of the gap on isotope mass. Using experimental data measured by absorption spectroscopy, we observed the non-linear behavior of Eg(T) of GaAs for T > ΘD.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
We report the synthesis of single-phase, crystalline CdSiO3 nanostructures at 580ºC; to the best of our knowledge, this is the lowest temperature at which this material is reported to form. The desired phase does not form below 580ºC, since the diffraction peaks are shifted to lower angles in the material treated at 570ºC when compared to JDPDS Card No. 85-0310. The source of silicon has strong influence on the product morphology: Na2SiO3 yields single-phase CdSiO3 in needle-shaped nanostructures, while high surface area mesostructured SiO2 yields coralloid-shaped particles. Low angle X-ray diffractometry reveals that the mesostructured nature of the silica precursor is not maintained in the resulting CdSiO3. Scanning electron microscopy suggests that in this case a transition occurs between the spherical morphology of the precursor and the needle-shape morphology of the material prepared from Na2SiO3. The surface area of the silica precursor has a strong influence in the reaction, since the use of commercial silica with a lower surface area does not yield the desired product.
Resumo:
This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark beta algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples. Copyright (C) 2009 H. B. Coda and R. R. Paccola.
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
In this work, we investigate the interplay between surface anchoring and finite-size effects on the smectic-isotropic transition in free-standing smectic films. Using an extended McMillan model, we study how a homeotropic anchoring stabilizes the smectic order above the bulk transition temperature. In particular, we determine how the transition temperature depends on the surface ordering and film thickness. We identify a characteristic anchoring for which the transition temperature does not depend on the film thickness. For strong surface ordering, we found that the thickness dependence of the transition temperature can be well represented by a power-law relation. The power-law exponent exhibits a weak dependence on the range of film thicknesses, as well as on the molecular alkyl tail length. Our results reproduce the main experimental findings concerning the layer-thinning transitions in free-standing smectic films.
Resumo:
The effects of temperature on the life table, and of seston quality on the individual growth and reproduction of cladocerans from a tropical lake were tested in the laboratory. Life-table experiments were carried out at 17 degrees C, 23 degrees C, and 27 degrees C. Growth bioassays tested the influence of natural seston fractions, separated by net filtration, on cladocerans. The treatments were: (1) total seston plus Scenedesmus spinosus (1 mg C.L(-1)), (2) seston <= 36 mu m, and (3) seston >36 mu m. Phytoplankton composition, density, and biomass were evaluated during growth experiments, together with sestonic carbon, nitrogen, and phosphorus concentrations. The intrinsic rates of natural increase were higher for Moina micrura and Daphnia ambigua at 27 degrees C compared to 17 degrees C. The age at first reproduction of both species was delayed at 17 degrees C. Growth rates and fecundity of M. micrura were higher in the seston fraction <= 36 mu m than in the fraction > 36 mu m. Higher growth rates and fecundity of Moina minuta were observed in the seston enriched with the green alga in comparison to the seston <= 36 mu m and > 36 mu m. Bosmina longirostris was unable to reproduce at 17 degrees C and to grow in the seston > 36 mu m in one experiment. High densities and/or biomass of large colonial and filamentous algae present in the larger seston fraction could have contributed to reduce growth and reproduction. Episodes of food-quantity limitation may occur, but there was no evidence of mineral limitation, although seston C:P and C:N ratios were always above the limiting values assumed for temperate water bodies. The C:P and C:N ratios arc highly influenced by carbon that originates primarily from resuspended detritus from the lake.
Resumo:
Background and Purpose: Radiofrequency (RF) ablation of renal tumors is a major technique for tumor cell destruction while preserving healthy renal parenchyma. There is no consensus in the literature regarding the optimal temperature, impedance, and time for RF application for effective cell destruction. This study investigated two variables while keeping time unchanged: Temperature for RF cell destruction and tissue impedance in dog kidneys. Materials and Methods: Sixteen dogs had renal punctures through videolaparoscopy for RF interstitial tissue ablation. A RF generator was applied for 10 minutes to the dog's kidney at different target temperatures: 80 degrees C, 90 degrees C, and 100 degrees C. On postoperative day14, the animals were sacrificed and nephrectomized. All lesions were macroscopically and microscopically examined. The bioelectrical impedance was evaluated at three different temperatures. Results: Renal injuries were wider and deeper at 90 degrees C (P < 0.001), and they were similar at 80 degrees C and 100 degrees C. The bioelectrical impedance was lower at 90 degrees C than at the temperatures of 80 degrees C and 100 degrees C (P < 0.001). Viable cells in the RF ablation tissue area were not found in the microscopic examination. Conclusion: The most effective cell destruction in terms of width and depth was achieved at 90 degrees C, which was also the optimal temperature for tissue impedance. RF ablation of renal cells eliminated all viable cells.
Resumo:
Objective: The purpose of this study was to assess the efficacy of Er:YAG laser energy for composite resin removal and the influence of pulse repetition rate on the thermal alterations occurring during laser ablation. Materials and Methods: Composite resin filling was placed in cavities (1.0 mm deep) prepared in bovine teeth and the specimens were randomly assigned to five groups according to the technique used for composite filling removal. In group I (controls), the restorations were removed using a high-speed diamond bur. In the other groups, the composite fillings were removed using an Er: YAG laser with different pulse repetition rates: group 2-2 Hz; group 3-4 Hz; group 4-6 Hz; and group 5-10 Hz. The time required for complete removal of the restorative material and the temperature changes were recorded. Results: Temperature rise during composite resin removal with the Er: YAG laser occurred in the substrate underneath the restoration and was directly proportional to the increase in pulse repetition rate. None of the groups had a temperature increase during composite filling removal of more than 5.6 degrees C, which is considered the critical point above which irreversible thermal damage to the pulp may result. Regarding the time for composite filling removal, all the laser-ablated groups (except for group 5 [10 Hz]) required more time than the control group for complete elimination of the material from the cavity walls. Conclusion: Under the tested conditions, Er: YAG laser irradiation was efficient for composite resin ablation and did not cause a temperature increase above the limit considered safe for the pulp. Among the tested pulse repetition rates, 6 Hz produced minimal temperature change compared to the control group (high-speed bur), and allowed composite filling removal within a time period that is acceptable for clinical conditions.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.