170 resultados para FUNCTIONAL MWNT SURFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the reproductive period. fecundity, and average size at the onset of functional maturity of female Aegla franca, the northernmost distributed aeglid species. The reproductive period is markedly seasonal and takes place front May (austral mid-autumn) to August (late winter). Ovigerous females appear quite abruptly in the population by May, and this condition is observed in all adult females sampled regardless of their size. The average size at the onset of functional maturity in females, at which 50% of the females sampled during the reproductive period were considered adults, was 12.75 mm CL. The smallest post-ovigerous female measured 12.06 mm carapace length (CL). Mean fecundity (+/- S.D.) from 41 females bearing early and intermediate eggs was 129.1 +/- 32.2 and corresponded to a mean female CL of 14.11 mm. The elliptical-shaped eggs exhibited significant increase in size along the development stages. The third pair of pleopods bore higher number of eggs than the others. Compiled information regarding the reproductive period reported for aeglids revealed all increase in the breeding period length with latitude. The reproductive period tends to be shorter in localities under larger rainfall variation and smaller temperature variability than in sites with opposite climate conditions. Eggs tend to be fewer in number and larger in size towards lower latitudes. We present an hypothesis that stream water velocity might act as a major selective pressure during the early life history of fluvial aeglids with direct effect on the reproductive pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Gap junction intercellular communication (GJIC) is considered to play a role in the regulation of homeostasis because it regulates important processes, such as cell proliferation and cell differentiation. A reduced or lost GJIC capacity has been observed in solid tumors and studies have demonstrated that GJIC restoration in tumor cells contribute to reversion of the transformed phenotype. This observation supports the idea that restoration of the functional channel is essential in this process. However, in the last years, reports have proposed that just the increase in the expression of specific connexins can contribute to reversion of the malign phenotype in some tumor cells. In the present work, we studied the effects of exogenous Connexin 43 (Cx43) expression on the proliferative behavior and phenotype of rat hepatocarcinoma cells. Results: The exogenous Cx43 did not increase GJIC capacity of transfected cells, but it was critical to decrease the cell proliferation rate as well as reorganization of the actin filaments and cell flattening. We also observed more adhesion capacity to substrate after Cx43 transfection. Conclusion: Cx43 expression leads to a decrease of the growth of the rat hepatocellular carcinoma cells and it contributes to the reversion of the transformed phenotype. These effects were independent of the GJIC and were probably associated with the phosphorylation pattern changes and redistribution of the Cx43 protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a compact 2 dimensional manifold M we classify all continuous flows phi without wandering points on M. This classification is performed by finding finitely many pairwise disjoint open phi-invariant subsets {U(1), U(2), ..., U(n)} of M such that U(i=1)(n) (U(i)) over bar = M and each U(i) is either a suspension of an interval exchange transformation, or a maximal open cylinder made up of closed trajectories of phi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a theoretical model for superhydrophobic surfaces that are formed from an extended array of microcavities, and have fabricated specific microcavity patterns to form superhydrophobic surfaces of the kind modeled. The model shows that the cavity aspect ratio can be significantly less than unity, indicating that the microcavities do not need to be deep in order to enhance the superhydrophobic character of the surface. We have fabricated surfaces of this kind and measured advancing contact angle as high as 153 degrees, in agreement with predictions of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the electronic properties of Mn(B) substitutional doping in cubic boron nitride (BN), for different charge states, using density functional theory (DFT) calculations. We show that the neutral Mn has a nonmagnetic ground state (S=0). Upon charge injection, it is unambiguously shown that the Mn(B)(-) has a high-spin configuration with a strong, localized magnetic moment of 5 mu(Bohr). We developed a simple model, parameterized by the DFT results, that allows us to interpret the rules played by the crystal-field and exchange-correlation splitting in the magnetization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the ground state of zigzag bilayer graphene nanoribbons is nonmagnetic. It also possesses a finite gap, which has a nonmonotonic dependence with the width as a consequence of the competition between bulk and strongly attractive edge interactions. All results were obtained using ab initio total-energy density functional theory calculations with the inclusion of parametrized van der Waals interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light absorption of alpha-glycine crystals grown by slow evaporation at room temperature was measured, indicating a 5.11 +/- 0.02 eV energy band gap. Structural, electronic, and optical absorption properties of alpha-glycine crystals were obtained by first-principles quantum mechanical calculations using density functional theory within the generalized gradient approximation in order to understand this result. To take into account the contribution of core electrons, ultrasoft and norm-conserving pseudopotentials, as well as an all electron approach were considered to compute the electronic density of states and band structure of alpha-glycine crystals. They exhibit three indirect energy band gaps and one direct Gamma-Gamma energy gap around 4.95 eV. The optical absorption related to transitions between the top of the valence band and the bottom of the conduction band involves O 2p valence states and C, O 2p conduction states, with the carboxyl group contributing significantly to the origin of the energy band gap. The calculated optical absorption is highly dependent on the polarization of the incident radiation due to the spatial arrangement of the dipolar glycine molecules; in the case of a polycrystalline sample, the first-principles calculated optical absorption is in good agreement with the measurement when a rigid energy shift is applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elementary surface excitations are studied by spin-polarized electron energy loss spectroscopy on a prototype oxide surface [an oxygen passivated Fe(001)-p(1 x 1) surface], where the various excitations coexist. For the first time, the surface phonons and magnons are measured simultaneously and are distinguished based on their different spin nature. The dispersion relation of all excitations is probed over the entire Brillouin zone. The different phonon modes observed in our experiment are described by means of ab initio calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a nonlocal functional of the exchange interaction for the ground-state energy of quantum spin chains described by the Heisenberg Hamiltonian. An alternating chain is used to obtain the correlation energy and a local unit-cell approximation is defined in the context of the density-functional theory. The agreement with our exact numerical data, for small chains, is significantly better than a previous formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. The results can be particularly relevant in the study of finite spin-1/2 Heisenberg chains, with exchange couplings changing, magnitude, or even sign, from bond-to-bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A density-functional formalism for superconductivity and magnetism is presented. The resulting relations unify previously derived Kohn-Sham equations for superconductors and for noncollinear magnetism. The formalism, which discriminates Cooper-pair singlets from triplets, is applied to two quantum liquids coupled by tunneling through a barrier. An exact expression is derived, relating the eigenstates and eigenvalues of the Kohn-Sham equations, unperturbed by tunneling, on one side of the barrier to the proximity-induced ordering potential on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.