35 resultados para Essential oil composition
Resumo:
Fatty acid (FA) composition of nine organs from two closely related Antarctic fish species, Notothenia codiceps and Notothenia rossii, was determined through gas chromatography with flame ionization detection. A data set for each species was obtained using major FA profiles from specimens caught in the sea waters of Admiralty Bay during the summer season. The FA profiles for both species are overall similar, but organ peculiarities have been found, which could reflect metabolic specificities and feeding habits between species. With the exception of liver, the most abundant FA in organs was the n-3 polyunsaturated FA. The total n-6 polyunsaturated FAs were minor components in all evaluated organs. Palmitic acid was identified as the major saturated FA, whereas oleic acid was the most represented of the monounsaturated FA in almost all assessed organs of both species. The n-3/n-6 ratios of all organs were higher than 3.5. Differences in individual FA and FA metabolic profiles of some organs observed between N. coriiceps and N. rossii suggest specific requirements in the mobilization, transport, incorporation, and/or catabolism of lipids that were reinforced by differences on some FA ratios expressing the activity coefficient of enzymes implicated on the FA pathway flux. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Objective: This study reports the effects of feeding with a combination of inulin-type fructans (ITF) and fish oil (FO) on mineral absorption and bioavailability as part of a semipurified diet offered to rats. Methods: Male Wistar rats (n = 24) were fed a 15% lipid diet (soybean oil [SO] or a 1:0.3 fish:soybean oil mixture [FSO]) and diets containing the same sources of lipids supplemented with 10% ITF (Raftilose Synergy 1) ad libitum for 15 d. Feces and urine were collected for mineral analyses during the last 5 d of the test period. Fatty acid composition was determined in liver and cecal mucosa homogenates. Liver and bone mineral analyses were performed by atomic absorption spectrophotometry. Bone biomechanical analyses were evaluated by a 3-point bending test. Results: Compared with the controls, ITF-fed rats had enlarged ceca and a significant decrease in cecal content pH (P < 0.001). The apparent mineral absorption was improved in these rats, and this effect was enhanced by dietary combination with FO for all minerals except for magnesium. Addition of ITF to the diet resulted in higher bone mineral content (calcium and zinc) and bone strength, but increased bone mineral content was only statistically significant in FO-fed animals. A decrease in liver iron stores (P = 0.015) was observed in rats fed FO, considering that ITF consumption returned to levels comparable to the SO control group. Conclusion: These findings confirm the positive influence of ITF on mineral bioavailability, which was potentiated by addition of FO to the diet. (C) 2009 Published by Elsevier Inc.
Resumo:
Glycosylation of the Ab molecule is essential for maintaining the functional structure of Fc region and consequently for Ab-mediated effector functions, such as binding to cells or complement system activation. Alterations in the composition of the sugar moiety can dramatically influence Ab activity; however, it is not completely clear how differences in the N-linked oligosaccharide structure impact the biological function of Abs. We have described that murine IgG1 Abs can be separated according to their ability to elicit in vivo anaphylaxis in a fraction of anaphylactic and other of non-anaphylactic molecules. Furthermore, we showed that the N-linked oligosaccharide chain is essential for the structural conformation of the anaphylactic IgG1, the binding to Fc gamma RIII on mast cells, and, consequently, for the ability to mediate anaphylactic reactions. In this study, we evaluated the contribution of individual sugar residues to this biological function. Differences in the glycan composition were observed when we analyzed oligosaccharide chains from anaphylactic or non-anaphylactic IgG1, mainly the presence of more sialic acid and fucose residues in anaphylactic molecules. Interestingly, the enzymatic removal of terminal sialic acid residues in anaphylactic IgG1 resulted in loss of the ability to trigger mast cell degranulation and in vivo anaphylactic reaction, similarly to the deglycosylated IgG1 Ab. In contrast, fucose removal did not affect the anaphylactic function. Therefore, we demonstrated that the ability of murine IgG1 Abs to mediate anaphylaxis is directly dependent on the amount of sialic acid residues associated to the oligosaccharide chain attached to the Fc region of these molecules. The Journal of Immunology, 2008, 181: 8308-8314.
Resumo:
BACKGROUND: Algae species have been used as an important source of food because they are highly nutritive considering their vitamin, protein, mineral, fiber, essential fatty acid and carbohydrate contents. However, a large number of seaweeds have been poorly studied, especially Brazilian species. Two red macroalgae species from the Brazilian coast (Plocamium brasiliense and Ochtodes secundiramea) were assessed with respect to their total lipid, fatty acid, total nitrogen, protein, amino acid and total carbohydrate contents. RESULTS: The total lipid contents (dry weight) were 36.3 and 35.4 g kg(-1); fatty acid contents were 9.3 and 12.1 g kg(-1); total nitrogen contents were 37.4 and 24.9 g kg(-1); protein contents were 157.2 and 101.0 g kg(-1); amino acid contents were 127.5 and 91.4 g kg(-1); and total carbohydrate contents were 520.3 and 450.7 g kg(-1) for P. brasiliense and O. secundiramea, respectively. CONCLUSION: Considering these compositions, both algae species were determined to have sources of protein, essential amino acids and carbohydrates similar to the edible seaweeds Laminaria japonica and Palmaria palmata. (C) 2011 Society of Chemical Industry
Resumo:
Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.