122 resultados para Er : YAB
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
Surgeries performed with high-intensity laser devices may be improved with accurate protocols, including the air-water spray regulation. Thus, this study sought to investigate the healing process of wounds made on the dorsum of rat tongues using an Er,Cr:YSGG laser device with different air-water spray regulations. The incisions were made on the dorsum of Wistar rat tongues using an Er,Cr:YSGG laser with three different air-water spray regulations (100/0%, 50/50%, 11/7%). Scalpel incisions functioned as controls. The sacrifices occurred between 0 and 14 days after surgery. Morphological, histological, and immunohistochemical (fibronectin and type III collagen) analysis of the wounds were performed. The air-water spray regulation influenced wound healing and the inflammatory response, especially in the earlier stages. Incisions performed using the 100/0% air/water spray regulation had the worst results, expressing a greater amount of fibronectin and type III collagen. The 50/50% air/water spray regulation brought in a non-clear surgical field and poor laser interaction with the tissue. The 11/7% air/water spray regulation showed the best clinical results and less pronounced histological events. According to the results encountered, the air-water spray should be regulated to improve surgery.
Resumo:
Background and Objectives: Er:YAG laser has been used for caries removal and cavity preparation, using ablative parameters. Its effect on the margins of restorations submitted to cariogenic challenge has not yet been sufficiently investigated. The aim of this study was to assess the enamel adjacent to restored Er:YAG laser-prepared cavities submitted to cariogenic challenge in situ, under polarized light microscopy. Study Design/Materials and Methods: Ninety-one enamel slabs were randomly assigned to seven groups (n = 13): I, II, III-Er:YAG laser with 250 mJ, 62.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; IV, V, VI-Er:YAG laser with 350 mJ, 87.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; VII-High-speed handpiece (control). Cavities were restored and the restorations were polished. The slabs were fixed to intra-oral appliances, worn by 13 volunteers for 14 days. Sucrose solution was applied to each slab six times per day. Samples were removed, cleaned, sectioned and ground to polarized light microscopic analysis. Demineralized area and inhibition zone width were quantitatively assessed. Presence or absence of cracks was also analyzed. Scores for demineralization and inhibition zone were determined. Results: No difference was found among the groups with regard to demineralized area, inhibition zone width, presence or absence of cracks, and demineralization score. Inhibition zone score showed difference among the groups. There was a correlation between the quantitative measures and the scores. Conclusion: Er:YAG laser was similar to high-speed handpiece, with regard to alterations in enamel adjacent to restorations submitted to cariogenic challenge in situ. The inhibition zone score might suggest less demineralization at the restoration margin of the irradiated substrates. Correlation between the quantitative measures and scores indicates that score was, in this case, a suitable complementary method for assessment of caries lesion around restorations, under polarized light microscopy. Lasers Surg. Med. 40:634-643, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
The aim of this study was to compare the effects of Nd:YAG, Er:YAG, and diode lasers on the morphology and permeability of root canal walls. The three laser wavelengths mentioned interact differently with dentin and therefore it is possible that the permeability changes caused will determine different indications during endodontic treatment. Twenty-eight human single-rooted teeth were instrumented up to ISO 40 and divided into four groups: group C, control (GC), non-laser irradiated; group N (GN), irradiated with Nd:YAG laser; group E (GE), with Er:YAG laser and group D (GD) with diode laser. After that, the roots were filled with a 2% methylene blue dye, divided into two halves and then photographed. The images were analyzed using Image J software and the percentage of dye penetration in the cervical, middle, and apical root thirds were calculated. Additional scanning electron microscopy (SEM) analyses were also performed. The analysis of variance (ANOVA) showed significant permeability differences between all groups in the middle and cervical thirds (p < 0.05). The Tukey test showed that in the cervical third, GN presented means of dye penetration statistically significantly lower than all of the other groups. In the middle third, GE and GD showed statistically higher dye penetration means than GC and GN. SEM analysis showed melted surfaces for GN, clean wall surfaces with open dentinal tubules for GE, and mostly obliterated dentinal tubules for GD. Er:YAG (2,094 nm) laser and diode laser (808 nm) root canal irradiation increase dentinal permeability and Nd:YAG (1,064 nm) laser decreases dentin permeability, within the studied parameters.
Resumo:
Objectives: The aim of this study was to assess the influence of irradiation distance and the use of cooling in the Er:YAG laser efficacy in preventing enamel demineralization. Methods: 84 enamel blocks were randomly assigned to seven groups (n = 12): G1: control group - no treatment, G2-G7: experimental groups treated with Er:YAG laser (80 mJ/2 Hz) at different irradiation distances with or without cooling: G2: 4 mm/2 mL; G3: 4 mm/no cooling; G4: 8 mm/2 mL; G5: 8 mm/no cooling; G6: 16 mm/2 mL; G7: 16 mm/no cooling. The samples were submitted to an in vitro pH cycles for 14 days. Next, the specimens were sectioned in sections of 80-100 mu m in thickness and the demineralization patterns of prepared slices were assessed using a polarized light microscope. Three samples from each group were analyzed with scanning electronic microscopy. Analysis of variance and the Fisher test were performed for the statistical analysis of the data obtained from the caries-lesion-depth measurements (CLDM) (alpha = 5%). Results: The control group (CLDM = 0.67 mm) was statistically different from group 2 (CLDM = 0.42 mm), which presented a smaller lesion depth, and group 6 (0.91 mm), which presented a greater lesion depth. The results of groups 3 (CLDM = 0.74 mm), 4 (CLDM = 0.70 mm), 5 (CLDM = 0.67 mm) and 7 (CLDM = 0.89 mm) presented statistical similarity. The scanning electronic microscopy analysis showed ablation areas in the samples from groups 4, 5, 6 and 7, and a slightly demineralized area in group 2. Conclusions: It was possible to conclude that Er:YAG laser was efficient in preventing enamel demineralization at a 4-mm irradiation distance using cooling. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The study evaluated the in vitro influence of pulse-repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface. Dentin surfaces of buccal or lingual surfaces from human third molars were submitted to tensile test in different depths (superficial, 1.0 and 1.5 mm) of the same dental area, using the same sample. Surface treatments were acid conditioning solely (control) and Er:YAG laser irradiation (80 mJ) followed by acid conditioning, with different pulse-repetition rates (1, 2, 3, or 4 Hz). Single bond/Z-250 system was used. The samples were stored in distilled water at 37 degrees C for 24 h, and then the first test (superficial dentine) was performed. The bond failures were analyzed. Following, the specimens were identified, grounded until 1.0- and 1.5-mm depths, submitted again to the treatments and to the second and, after that, to third-bond tests on a similar procedure and failure analysis. ANOVA and Tukey test demonstrated a significant difference (p < 0.001) for treatment and treatment X depth interaction (p < 0.05). The tested depths did not show influence (p > 0.05) on the bond strength of dentin-resin interface. It may be concluded that Er:YAG laser with 1, 2, 3, or 4 Hz combined with acid conditioning did not increase the resin tensile bond strength to dentin, regardless of dentin depth. (C) 2007 Wiley Periodicals, Inc.
Resumo:
P>Aim To evaluate in vitro the effect of calcium hydroxide [Ca(OH)(2)] and Er:YAG laser on bacterial endotoxin [also known as lipopolysaccharide (LPS)] as determined by nitric oxide (NO) detection in J774 murine macrophage cell line culture. Methodology Samples of LPS solution (50 mu gmL-1), Ca(OH)(2) suspension (25 mg mL-1) and LPS suspension with Ca(OH)(2) were prepared. The studied groups were: I - LPS (control); II - LPS + Ca(OH)(2); III - LPS + Er:YAG laser (15 Hz 140 mJ); IV - LPS + Er:YAG laser (15 Hz 200 mJ); V - LPS + Er:YAG laser (15 Hz 250 mJ), VI - Pyrogen-free water; VII - Ca(OH)(2). Murine macrophage J774 cells were plated and 10 mu L of the samples were added to each well. The supernatants were collected for NO detection by the Griess reaction. Data were analysed statistically by one-way anova and Tukey`s test at 5% significance level. Results The mean and SE (in mu mol L-1) values of NO release were: I - 10.48 +/- 0.58, II - 6.41 +/- 0.90, III - 10.2 +/- 0.60, IV - 8.35 +/- 0.40, V - 10.40 +/- 0.53, VI - 3.75 +/- 0.70, VII - 6.44 +/- 0.60; and the values for the same experiment repeated after 1 week were: I - 21.20 +/- 1.50, II - 9.10 +/- 0.60, III - 19.50 +/- 1.00, IV - 18.50 +/- 0.60, V - 21.30 +/- 0.90, VI - 2.00 +/- 0.20, VII - 6.80 +/- 1.70. There was no significant difference (P > 0.05) between the control and the laser-treated groups (III, IV and V), or comparing groups II, VI and VII to each other (P > 0.05). Group I had significantly higher NO release than group II (P < 0.05). Groups II and VI had similar NO release (P > 0.05). Conclusions Calcium hydroxide inactivated the bacterial endotoxin (LPS) whereas none of the Er:YAG laser parameter settings had the same effectiveness.
Resumo:
Background: Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. Purpose: To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Methods: Sixty human third molars were employed to obtain discs (congruent to 1 mm thick) that were randomly assigned to six groups (n = 10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm. and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Results: Laser irradiation at 11 and 12 min provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Conclusions: Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.
Resumo:
Objective: To assess the influence of energy and pulse repetition rate of Er:YAG laser on the enamel ablation ability and substrate morphology. Methods: Fifteen crowns of molars were sectioned in four fragments, providing 60 samples, which were ground to flatten the enamel surface. The initial mass was obtained by weighing the fragments. The specimens were hydrated for I h, fixed, and a 3-mm-diameter area was delimited. Twelve groups were randomly formed according to the combination of laser energies (200, 250, 300, or 350 mJ) and pulse repetition rates (2, 3, or 4 Hz). The final mass was obtained and mass loss was calculated by the difference between the initial and final mass. The specimens were prepared for SEM. Data were submitted to ANOVA and Scheffe test. Results: The 4 Hz frequency resulted in higher mass loss and was statistically different from 2 and 3 Hz (p < 0.05). The increase of frequency produced more melted areas, cracks, and unselective and deeper ablation. The 350 mJ energy promoted greater mass loss, similar to 300 mJ. Conclusions: The pulse repetition rate influenced more intensively the mass loss and morphological alteration. Among the tested parameters, 350 mJ/3 Hz improved the ability of enamel ablation with less surface morphological alterations. (C) 2007 Wiley Periodicals, Inc. J Biomed Mater Res.
Resumo:
The aim of this study was to assess in vitro the influence of Er:YAG laser irradiation distance on the shear strength of the bond between an adhesive restorative system and primary dentin. A total of 60 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface and were randomly assigned to six groups (n = 10). The control group was etched with 37% phosphoric acid. The remaining five groups were irradiated (80 mJ, 2 Hz) at different irradiation distances (11, 12, 16, 17 and 20 mm), followed by acid etching. An adhesive agent (Single Bond) was applied to the bonding sites, and resin cylinders (Filtek Z250) were prepared. The shear bond strength tests were performed in a universal testing machine (0.5 mm/min). Data were submitted to statistical analysis using one-way ANOVA and the Kruskal-Wallis test (p < 0.05). The mean shear bond strengths were: 7.32 +/- 3.83, 5.07 +/- 2.62, 6.49 +/- 1.64, 7.71 +/- 0.66, 7.33 +/- 0.02, and 9.65 +/- 2.41 MPa in the control group and the groups irradiated at 11, 12, 16, 17, and 20 mm, respectively. The differences between the bond strengths in groups II and IV and between the bond strengths in groups II and VI were statistically significant (p < 0.05). Increasing the laser irradiation distance resulted in increasing shear strength of the bond to primary dentin.
Resumo:
Purpose: To evaluate in vitro the influence of water flow rate on shear bond strength of a resin composite to enamel and dentin after Er:YAG cavity preparation. Methods: Ten bovine incisors were selected and roots removed. Crowns were sectioned in four pieces, resulting in 40 samples that were individually embedded in polyester resin (n=10), and ground to plane the enamel and expose the dentin. The bonding site was delimited and samples were randomly assigned according to cavity preparation: (1) Er:YAG/1.0 mL/minute; (2) Er:YAG/1.5 mL/minute; (3) Er:YAG/2.0 mL/minute and (4) High speed handpiece/bur (control group). Samples were fixed to a metallic device, where composite resin cylinders were prepared. Subsequently, they were stored for 24 hours and subjected to a shear bond strength test (500N at 0.5 mm/minute). Results: Means (MPa) were: enamel: 1: 12.8; 2: 16.8; 3: 17.5; 4: 36.0 and Dentin: 1: 13.6; 2: 18.7; 3: 12.1; 4: 21.3. Data were submitted to ANOVA and Tukey`s test. Adhesion to enamel was more efficient than for dentin. The cavities prepared with conventional bur (control) presented higher statistically significant bond strength values (P<0.05) than for Er:YAG laser for both enamel and dentin. No significant differences were observed between water flow rates employed during enamel ablation. For dentin, the shear bond strength of 2.0 mL/minute water flow rate was lower than for 1.5 mL/minute and 1.0 mL/minute rates. The Er:YAG laser adversely affected shear bond strength of resin composite to both enamel and dentin, regardless of the water flow rate used.
Resumo:
This in vitro study evaluated the microtensile bond strength of a resin composite to Er:YAG-prepared dentin after long-term storage and thermocycling. Eighty bovine incisors were selected and their roots removed. The crowns were ground to expose superficial dentin. The samples were randomly divided according to cavity preparation method (I-Er:YAG laser and II-carbide bur). Subsequently, an etch & rinse adhesive system was applied and the samples were restored with a resin composite. The samples were subdivided according to time of water storage (WS)/number of thermocycles (TC) performed: A) 24 hours WS/no TC; B) 7 days WS/500 TC; C) 1 month WS/2,000 TC; D) 6 months WS/12,000 TC. The teeth were sectioned in sticks with a cross-sectional area of 1.0-mm(2), which were loaded in tension in a universal testing machine. The data were subjected to two-way ANOVA, Scheffe and Fisher`s tests at a 5% level. In general, the bur-prepared group displayed higher microtensile bond strength values than the laser-treated group. Based on one-month water storage and 2,000 thermocycles, the performance of the tested adhesive system to Er:YAG-laser irradiated dentin was negatively affected (Group IC), while adhesion of the bur-prepared group decreased only within six months of water storage combined with 12,000 thermocycles (Group IID). It may be concluded that adhesion to the Er:YAG laser cavity preparation was more affected by the methods used for simulating degradation of the adhesive interface.
Resumo:
Purpose: In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Materials and Methods: Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S-3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (mu TBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereo microscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Results: Significantly lower mu TBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Conclusion: Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin. Keywords: dentin, adhesion, adhesives, laser, ErCr:YSGG.
Resumo:
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinemia and recurrent infections. Herein we addressed the role of unfolded protein response (UPR) in the pathogenesis of the disease. Augmented unspliced X-box binding protein 1 (XBP-1) mRNA concurrent with co-localization of IgM and BiP/GRP78 were found in one CVID patient. At confocal microscopy analysis this patient`s cells were enlarged and failed to present the typical surface distribution of IgM, which accumulated within an abnormally expanded endoplasmic reticulum. Sequencing did not reveal any mutation on XBP-1, neither on IRE-1 alpha that could potentially prevent the splicing to occur. Analysis of spliced XBP-1, IRE-1 alpha and BiP messages after LPS or Brefeldin A treatment showed that, unlike healthy controls that respond to these endoplasmic reticulum (ER) stressors by presenting waves of transcription of these three genes, this patient`s cells presented lower rates of transcription, not reaching the same level of response of healthy subjects even after 48 h of ER stress. Treatment with DMSO rescued IgM and IgG secretion as well as the expression of spliced XBP-1. Our findings associate diminished splicing of XBP-1 mRNA with accumulation of IgM within the ER and lower rates of chaperone transcription, therefore providing a mechanism to explain the observed hypogammaglobulinemia. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic structures of the title compounds have been studied by neutron diffraction. In contrast to the isomorphous RNi(2)B(2)C compounds, wherein a variety of exotic incommensurate modulated structures has been observed, the magnetic structure of ErCo(2)B(2)C is found to be a collinear antiferromagnet with k = (12, 0, 12) while those of HoCo(2)B(2)C and DyCo(2)B(2)C are observed to be simple ferromagnets. For all studied compounds, the moments are found to be confined within the basal plane and their magnitudes are comparable to the values obtained from the low-temperature isothermal magnetization measurements. The absence of modulated magnetic structures in the RCo(2)B(2)C series (for ErCo(2)B(2)C, verified down to 50 mK) is attributed to the quenching of the Fermi surface nesting features.