36 resultados para Endothelial Cells


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298: C1245-C1252, 2010. First published February 17, 2010; doi: 10.1152/ajpcell.00417.2009.-Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are controversial reports in the literature concerning the reactivity of singlet oxygen ((1)O(2)) with the redox probe 2`,7`-dichlorodihydrofluorescein (DCFH). By carefully preparing solutions in which (1)O(2) is quantitatively generated in the presence of DCFH, we were able to show that the formation rate of the fluorescent molecule derived from DCFH oxidation, which is 2`,7`-dichlorofluorescein (DCF), increases in D(2)O and decreases in sodium azide, proving the direct role of (1)O(2) in this process. We have also prepared solutions in which either (1)O(2) or dication (MB(center dot 2+)) and semi-reduced (MB(center dot)) radicals of the sensitizer and subsequently super-oxide radical (O(2)(center dot-)) are generated. The absence of any effect of SOD and catalase ruled out the DCFH oxidation by O(2)(center dot-), indicating that both (1)O(2) and MB(center dot 2+) react with DCFH. Although the formation of DCF was 1 order of magnitude larger in the presence of MB(center dot 2+) than in the presence of (1)O(2), considering the rate of spontaneous decays of these species in aqueous solution, we were able to conclude that the reactivity of (1)O(2) with DCFH is actually larger than that of MB(center dot 2+). We conclude that DCFH can continue to be used as a probe to monitor general redox misbalance induced in biologic systems by oxidizing radicals and (1)O(2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, we report on the synthesis of photosensitizing nanoparticles in which the generation of different oxidizing species, i.e., singlet oxygen ((1)O(2)) or radicals, was modulated. Sol gel and surface chemistry were used to obtain nanoparticles with specific ratios of dimer to monomer species of phenothiazine photosensitizers (PSs). Due to competition between the reactions involving electron transfer within dimer species and energy transfer from monomer triplets to oxygen, the efficiency of (1)O(2) generation could be controlled. Nanoparticles with an excess of dimer have an (1)O(2) generation efficiency (S(Delta)) of 0.01 while those without dimer have a S, value of 0.4. Furthermore, we demonstrate that the PS properties of the nanoparticles are not subjected to interference from the external medium as is commonly the case for free PSs, i.e., PS ground and triplet states are not reduced by NADH and ascorbate, respectively, and singlet excited states are less suppressed by bromide. The modulated (1)O(2) generation and the PS protection from external interferences make this nanoparticle platform a promising tool to aid in performing mechanistic studies in biological systems. Also, it offers potential application in technological areas in which photo-induced processes take place.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The innate immune reaction to tissue injury is a natural process, which can have detrimental effects in the absence of negative feedbacks by glucocorticoids (GCs). Although acute lipopolysaccharide (LPS) challenge is relatively harmless to the brain parenchyma of adult animals, the endotoxin is highly neurotoxic in animals that are treated with the GC receptor antagonist RU486. This study investigated the role of cytokines of the gp130-related family in these effects, because they are essential components of the inflammatory process that provide survival signals to neurons. Intracerebral LPS injection stimulated expression of several members of this family of cytokines, but oncostatin M (Osm) was the unique ligand to be completely inhibited by the RU486 treatment. OSM receptor (Osmr) is expressed mainly in astrocytes and endothelial cells following LPS administration and GCs are directly responsible for its transcriptional activation in the presence of the endotoxin. In a mouse model of demyelination, exogenous OSM significantly modulated the expression of genes involved in the mobilization of oligodendrocyte precursor cells (OPCs), differentiation of oligodendrocyte, and production of myelin. In conclusion, the activation of OSM signaling is a mechanism activated by TLR4 in the presence of negative feedback by GCs on the innate immune system of the brain. OSM absence is associated with detrimental effects of LPS, whereas exogenous OSM favors repair response to demyelinated regions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modification of a gold electrode surface by electropolymerization of trans-[Ru(NH(3))(4)(Ist)SO(4)](+) to produce an electrochemical sensor for nitric oxide was investigated. The influence of dopamine, serotonin and nitrite as interferents for NO detection was also examined using square-wave voltammetry (SWV). The characterization of the modified electrode was carried out by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) and SERS techniques. The gold electrode was successfully modified by the trans-[Ru(NH(3))(4)(Ist)SO(4)](+) complex ion using cyclic voltammetry. The experiments show that a monolayer of the film is achieved after ten voltammetric cycles, that NO in solution can coordinate to the metal present in the layer, that dopamine, serotonin and nitrite are interferents for the detection of NO, and that the response for the nitrite is much less significant than the responses for dopamine and serotonin. The proposed modified electrode has the potential to be applied as a sensor for NO. (C) 2011 Elsevier Ltd. All rights reserved.