37 resultados para ESR-hankkeet
Resumo:
Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.
Resumo:
Grossular is one of six members of silicate Garnet group. Two samples GI and GII have been investigated concerning their luminescence thermally stimulated (TL). EPR and optical absorption and the measurements were carried out to find out whether or not same point defects are responsible for all three properties. Although X-rays diffraction analysis has shown that both GI and GII have practically the same crystal structure of a standard grossular crystal, they presented different behavior in many aspects. The TL glow curve shape, TL response to radiation dose, the effect of annealing at high temperatures before irradiation, the dependence of UV bleaching parameters on peak temperature, all of them differ going from GI to GII. The EPR signals around g = 2.0 as well as at g = 4.3 and 6.0 have much larger intensity in GI than in GII. Very high temperature (> 800 degrees C annealing causes large increase in the bulk background absorption in GI, however, only very little in GII. In the cases of EPR and optical absorption, the difference in their behavior can be attributed to Fe3+ ions; however, in the TL case one cannot and the cause was not found as yet. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Diopside, a natural silicate mineral of formula CaMgSi2O6, has been investigated concerning its thermoluminescence (TL) and electron paramagnetic resonance (EPR) properties. Glow curves and TL vs. gamma-dose were obtained irradiating natural samples to additional dose varying from 50 to 10,000Gy. Except for a 410 degrees C peak found in the Al-doped artificial diopside, all the other peaks grow linearly with radiation dose, but saturate beyond -1 kGy. To investigate high-temperature effect before irradiation, measurements of TL intensity in samples annealed at 500-900 degrees C and then irradiated to I kGy gamma-dose were carried out. Also the TL emission spectrum has been obtained. To compare with natural diopside, a synthetic pure polycrystal was produced and further those doped with iron, aluminum and manganese were also produced. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A Li(2)O-B(2)O(3)-Al(2)O(3) glass system, un-doped and doped with LiF, and/or TiO(2) was synthesized by the fusion method and its physical properties were investigated by thermoluminescence (TL), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), atomic force microscopy (AFM) and differential thermal analysis (DTA). The samples were subjected to gamma-rays from a colbalt-60 ((60)Co) source. These techniques provided evidence of LiF and LiF doped with Ti crystal formation in the glass system. A TL glow peak at about 433 K was sensitive to (60)Co gamma-rays and showed good linearity with doses and consequently could be used to quantify radiation doses. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.
Resumo:
Benzene adsorbed on highly acidic sulfated TiO2 (S-TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue-violet region. There are very interesting spectral features: the preferential enhancement of the e(2g) mode (1595 cm(-1)) in relation to the a(1g) mode (ring-breathing mode at 995 cm(-1)) and the appearance of bands at 1565 and 1514 cm(-1). The band at 1565 cm(-1) is probably one of the components of the e(2g) split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm(-1) is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S-TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring-breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm(-1) in the RR spectra of benzene/S-TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Catalyst precursors composed of Ni/Mg/Al oxides with added La and Ce were tested in ethanol steam reforming (ESR) reactions. La and Ce were added by anion-exchange. The oxides were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) analysis. The catalyst precursors consist of a mixture of oxides, with the nickel in the form of NiO strongly interacting with the support Mg/Al. The XPS analysis showed a lanthanum-support interaction, but no interaction of Ce species with the support. The reaction data obtained with the active catalysts showed that the addition of Ce and La resulted in better H(2) production at 550 degrees C. The CeNi catalyst provided the higher ethanol conversion, with lower acetaldehyde production, possibly clue to a favoring of water adsorption on the weakly interacting clusters of CeO(2) on the surface. (C) 2010 Elsevier B.V. All rights reserved.