216 resultados para Dynamic Changes
Resumo:
This paper presents a rational approach to the design of a catamaran's hydrofoil applied within a modern context of multidisciplinary optimization. The approach used includes the use of response surfaces represented by neural networks and a distributed programming environment that increases the optimization speed. A rational approach to the problem simplifies the complex optimization model; when combined with the distributed dynamic training used for the response surfaces, this model increases the efficiency of the process. The results achieved using this approach have justified this publication.
Resumo:
This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.
Resumo:
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 1 0-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.
Resumo:
The changing pattern of developing cuticle and associated epidermis is described during the imaginal molt in the honey bee. Observations began immediately after the pupal molt, and included histological analyses of the integument during apolysis and the subsequent deposition and differentiation of the adult cuticle. Apolysis coincides with a marked increase in the thickness and reorganization of the epidermal layer, reflecting changes in cell structure. The epidermis remains thickened during the period of cuticle deposition, suggesting intense biosynthetic activity, but turns into a very thin layer during cuticle differentiation, clearly indicating that secretory activity for cuticle formation is terminating. The thoracic cuticle differentiates earlier and becomes thicker than the abdominal. The observed changes in integument structure provide insights that permit an improved physiological characterization for staging pupal and pharate adult development.
Resumo:
The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s), the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system.
Resumo:
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.
Resumo:
In this study we analyzed the topography of induced cortical oscillations in 20 healthy individuals performing simple attention tasks. We were interested in qualitatively replicating our recent findings on the localization of attention-induced beta bands during a visual task [1], and verifying whether significant topographic changes would follow the change of attention to the auditory modality. We computed corrected latency averaging of each induced frequency bands, and modeled their generators by current density reconstruction with Lp-norm minimization. We quantified topographic similarity between conditions by an analysis of correlations, whereas the inter-modality significant differences in attention correlates were illustrated in each individual case. We replicated the qualitative result of highly idiosyncratic topography of attention-related activity to individuals, manifested both in the beta bands, and previously studied slow potential distributions [2]. Visual inspection of both scalp potentials and distribution of cortical currents showed minor changes in attention-related bands with respect to modality, as compared to the theta and delta bands, known to be major contributors to the sensory-related potentials. Quantitative results agreed with visual inspection, supporting to the conclusion that attention-related activity does not change much between modalities, and whatever individual changes do occur, they are not systematic in cortical localization across subjects. We discuss our results, combined with results from other studies that present individual data, with respect to the function of cortical association areas.
Resumo:
Background: Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes. Methods: Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results: In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT) indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion: Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.
Resumo:
Background: We aimed to compare plasma concentrations of carbon dioxide (CO(2)) in dogs that underwent intra- and preperitoneal CO(2) insufflation. Materials and Methods: Thirty dogs were studied. Ten formed a control group, 10 underwent intraperitoneal CO(2) insufflation, and 10 underwent preperitoneal CO(2) insufflation. General anesthesia with controlled ventilation was standardized for all dogs. After stabilizing the anesthesia, blood samples were collected at predetermined times and were sent for immediate gasometric analysis. Analysis of variance was used for comparing variables. Results: The plasma CO(2) concentration in the intraperitoneal insufflation group increased significantly more than in the preperitoneal insufflation group and was significantly greater than in the control group (P < 0.05). The pH values in the intraperitoneal group were lower than in the preperitoneal group (P < 0.05). Conclusion: The data from this study suggest that a greater plasma concentration of CO(2) is achieved by insufflation at constant pressure into the intraperitoneal space than into the preperitoneal space.
Resumo:
Background: Chronic pelvic pain (CPP) is a lower abdominal pain lasting at least 6 months, occurring continuously or intermittently and not associated exclusively with menstruation or intercourse. Although the musculoskeletal system has been found to be involved in CPP, few studies have assessed the contribution of posture in women with CPP. We aimed to determine if the frequency of postural changes was higher in women with CPP than healthy subjects. Methods: A case-control study included 108 women with CPP of more than 6 months' duration (CPP group) who consecutively attended at the Hospital of the University of Sao Paulo and 48 healthy female volunteers (control group). Postural assessment was noninvasive and performed in the standing position, with the reference points of Kendall used as normal parameters. Factors associated with CPP were assessed by logistic regression analysis. Results: Logistic regression showed that the independent factors associated with CPP were postural changes in the cervical spine (OR 4.1; 95% CI 1.6-10.7; p < 0.01) and scapulae (OR 2.9; 95% CI 1.1-7.6; p < 0.05). Conclusion: Musculoskeletal changes were associated with CPP in 34% of women. These findings suggest that a more detailed assessment of women with CPP is necessary for better diagnosis and for more effective treatment.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
Resumo:
Managing schizophrenia has never been a trivial matter. Furthermore, while classical antipsychotics induce extrapyramidal side effects and hyperprolactinaemia, atypical antipsychotics lead to diabetes, hyperlipidaemia, and weight gain. Moreover, even with newer drugs, a sizable proportion of patients do not show significant improvement. Alstonine is an indole alkaloid identified as the major component of a plant-based remedy used in Nigeria to treat the mentally ill. Alstonine presents a clear antipsychotic profile in rodents, apparently with differential effects in distinct dopaminergic pathways. The aim of this study was to complement the antipsychotic profile of alstonine, verifying its effects on brain amines in mouse frontal cortex and striatum. Additionally, we examined if alstonine induces some hormonal and metabolic changes common to antipsychotics. HPLC data reveal that alstonine increases serotonergic transmission and increases intraneuronal dopamine catabolism. In relation to possible side effects, preliminary data suggest that alstonine does not affect prolactin levels, does not induce gains in body weight, but prevents the expected fasting-induced decrease in glucose levels. Overall, this study reinforces the proposal that alstonine is a potential innovative antipsychotic, and that a comprehensive understanding of its neurochemical basis may open new avenues to developing newer antipsychotic medications.
Resumo:
Objective: To verify the effects of laser energy on intracanal dentin surfaces, by analyzing the morphologic changes and removal of debris in the apical third of 30 extracted human teeth, prepared and irradiated with the Nd:YAG laser and diode laser. Background Data: Lasers have been widely used in endodontics. The morphologic changes in dentin walls caused by Nd: YAG and diode laser irradiation could improve apical seals and cleanliness. Materials and Methods: The protocol used for Nd: YAG laser irradiation was 1.5 W, 100 mJ, and 15 Hz, in pulsed mode, and for diode laser was 2.5 W in continuous mode. Each specimen was irradiated four times at a speed of 2 mm/sec with a 20-sec interval between applications. Five calibrated examiners scored the morphologic changes and debris removal on a 4-point scale. Results: In analyzing the scores, there were no statistically significant differences between the two types of laser for either parameter, according to Kruskal-Wallis testing at p = 0.05. The SEM images showed fusion and resolidification of the dentin surface, with partial removal of debris on the specimens irradiated with the Nd: YAG laser and the diode laser, compared with controls. Conclusion: Both lasers promote morphologic changes and debris removal. These alterations of the dentin surface appeared to be more evident in the Nd: YAG laser group, but the diode laser group showed more uniform changes.
Resumo:
Objective: To determine the changes in the position and form of the temporomandibular joint articular disc in adolescents with Class II division 1 malocclusion and mandibular retrognathism treated with the Herbst appliance (phase I) and fixed orthodontic appliance (phase II). Materials and Methods: Thirty-two consecutive adolescents went through phase I of treatment and 23 completed phase II. The temporomandibular joints were evaluated qualitatively by means of magnetic resonance images at the beginning of treatment (T1), during phase I (T2), at the end of phase I (T3), and at the end of phase II (T4). Results: Significant changes in disc position were not observed with the mouth closed between T1 X T3 (P = .317), T3 X T4 (P = .287), or T1 X T4 (P = .261). At T2, on average, the disc was positioned regressively. With the mouth open, no difference was observed between T1 X T3 (P = .223) or T1 X T4 (P = .082). We did observe a significant difference between T3 X T4 (P < .05). Significant changes in the disc form were found with the mouth closed between T1 X T2 (P < .001) and T2 X T3 (P < .001). Conclusions: At the end of the two-phase treatment, in general terms, the position and form of the initial articular discs were maintained; however, in some temporomandibular joints some seemingly adverse effects were observed at T4. (Angle Orthod. 2010;80:843-852.)
Resumo:
Objective: This study evaluated ultra-structural dentine changes at the apical stop after CO(2) laser irradiation used during biomechanical preparation. Background: Most studies evaluating the sealing efficiency of CO(2) lasers have been carried out after apical root canal resections and retro-filling procedures. Methods: Sixty human canines were prepared with #1 to #6 Largo burs. The apical stops were established at 1 mm (n = 30) and 2 mm (n = 30) from the apex. Final irrigation was performed with 1% NaOCl and 15% EDTA followed by 20 ml of distilled and deionized water. Specimens were subdivided into three subgroups (n = 10 for each stop distance): GI-no radiation (n = 20); GII-3W potency (n = 20), GIII-5W potency (n = 20). After preparation, specimens were evaluated by scanning electron microscopy, with ultra-structural changes classified according to a scoring system based on six qualitatively different outcomes. Results: Statistical analysis using the Mann-Whitney test confirmed more intense results for the specimens irradiated at 5 W potency than at 3 W (p<0.0001). The Kruskal-Wallis test indicated that when using the same potencies (3 or 5 W) at 1 and 2 mm from the apex, there were no statistically significant differences in ultra-structural changes. Conclusions: Our results showed that ultra-structural changes ranged from smear layer removal to dentine fusion. As laser potency was increased from 3 to 5 W, ultra-structural changes included extensive fused lava-like areas sealing the apical foramen.