48 resultados para Doubly charmed baryon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing interest about the use of stable isotopes for body composition analysis in pediatrics. To ensure the success of total body water analysis by the deuterium dilution method, it is fundamental to determine the equilibrium tune (plateau) of deuterium in the body fluid studied. Objectives: We report here the equilibration time of deuterium oxide in the saliva of newborns after oral intake of the isotope. Methods: Twenty healthy term newborn infants, 10 males and 10 females, were analyzed. Saliva was collected from each newborn before the oral administration of a 100 mg/kg dose of deuterium oxide (baseline sample) and then at 1-hour intervals for 5 hours after administration. Deuterium enrichment of saliva was determined by isotope ratio mass spectrometry according to the recommendations of the International Atomic Energy Agency. Results: The plateau time of deuterium in saliva occurred 3 hours after oral administration of the stable isotope. Conclusion: These data are essential for further studies on the body composition of newborn infants. To the best of our knowledge, this is the first study regarding the equilibration time of deuterium in the saliva of term newborns. JPGN 48:471-474, 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to determine whether under-reporting rates vary between dietary pattern Clusters. Subjects were sixty-five Brazilian women. During 3 weeks, anthropometric data were collected. total energy expenditure (TEE) was determined by the doubly labelled water method and diet Was Measured. Energy intake (El) and the daily frequency of consumption per 1000 kJ of twenty-two food groups were obtained from a FFQ. These frequencies were entered into a Cluster analysis procedure in order to obtain dietary patterns. Under-reporters were defined Lis those who did not lose more than 1 kg of body weight during the study and presented EI:TEE less than 0.82. Three dietary pattern clusters were identified and named according to their most recurrent food groups: sweet foods (SW). starchy foods (ST) and health), (H). Subjects from the healthy cluster had the lowest mean EI:TEE (SW = 0.86, ST = 0.71 and H = 0.58: P = 0.003) and EI - TEE (SW = -0.49 MJ, ST = - 3.20 MJ and H = -5.09 MJ; P = 0.008). The proportion of Under-reporters was 45.2 (95 % CI 35.5, 55.0) % in the SW Cluster: 58.3 (95 % CI 48.6, 68.0) % in the ST Cluster and 70.0 (95 % CI 61.0, 79) % in the H cluster (P=0.34). Thus, in Brazilian women, Under-reporting of El is not uniformly distributed among, dietary pattern clusters and tends to be more severe among subjects from the healthy cluster. This cluster is more consistent with both dietary guidelines and with what lay individuals usually consider `healthy eating`.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primordial Quark Nuggets, remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at intermediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching Earth. `Asteroids` with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the impact of the existence of a primordial magnetic field on the filter mass, characterizing the minimum baryonic mass that can form in dark matter (DM) haloes. For masses below the filter mass, the baryon content of DM haloes are severely depressed. The filter mass is the mass when the baryon to DM mass ratio in a halo is equal to half the baryon to DM ratio of the Universe. The filter mass has previously been used in semi-analytic calculations of galaxy formation, without taking into account the possible existence of a primordial magnetic field. We examine here its effect on the filter mass. For homogeneous comoving primordial magnetic fields of B(0) similar to 1 or 2 nG and a re-ionization epoch that starts at a redshift z(s) = 11 and is completed at z(r) = 8, the filter mass is increased at redshift 8, for example, by factors of 4.1 and 19.8, respectively. The dependence of the filter mass on the parameters describing the re-ionization epoch is investigated. Our results are particularly important for the formation of low-mass galaxies in the presence of a homogeneous primordial magnetic field. For example, for B(0) similar to 1 nG and a re-ionization epoch of z(s) similar to 11 and z(r) similar to 7, our results indicate that galaxies of total mass M similar to 5 x 108 M(circle dot) need to form at redshifts z(F) greater than or similar to 2.0, and galaxies of total mass M similar to 108 M(circle dot) at redshifts z(F) greater than or similar to 7.7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new class of accelerating world models unifying the cosmological dark sector (dark matter and dark energy). All the models are described by a simplified version of the Chaplygin gas quartessence cosmology. It is found that even for Omega(k) not equal 0, this quartessence scenario depends only on a pair of parameters which can severely be constrained by the cosmological tests. As an example we perform a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations. In our analysis we have considered the SNe type la Union sample compiled by Kowalski et al. [M. Kowalski et al., Astrophys. J. 686 (2008) 749, arXiv:0804.4142]. At 95.4% (c.l.), we find for BAD + Union sample, alpha = 0.81(-0.04)(+0.04) and Omega(Q4) = 1.15(-0.17)(+0.16) The best-fit for this simplified quartessence scenario is a spatially closed Universe and its reduced chi(2) is exactly the same of the flat concordance model (Lambda CDM). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of accelerating cosmological models driven by a one-parameter version of the general Chaplygin-type equation of state is proposed. The simplified version is naturally obtained from causality considerations with basis on the adiabatic sound speed vs plus the observed accelerating stage of the universe. We show that very stringent constraints on the unique free parameter a describing the simplified Chaplygin model can be obtained from a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations (BAO). In our analysis we have considered separately the SNe type la gold sample measured by [A.G. Riess et al.. Astrophys. J. 607 (2004) 665] and the supernova legacy survey (SNLS) from [P. Astier et al., Astron. Astrophys. 447 (2006) 31]. At 95.4% (c.l.), we find for BAO + gold sample, 0.91 <= alpha <= 1.0 and Omega(m) = 0.28(-0.048)(+0.043) while BAO + SNLS analysis provides 0.94 <= alpha <= 1.0 and Omega(m) = 0.27(-0.045)(+0.048). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ""radiation"". Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. (C) 2009 Elseiver. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first observation of two Cabibbo-suppressed ecay modes, Xi(+)(c) -> Sigma(+)pi(-)pi(+) and Xi c+ -> Sigma(-)pi(+)pi(+). We observe 59 +/- 14 over a background of 87, and 22 +/- 8 over a background of 13 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 Gev/c Sigma(-) beam. The branching ratios of the decays relative to the Cabibbo-favored Xi c+ -> Xi(-)pi(+)pi(+) are measured to be B(Xi(+)(c) -> Sigma(+)pi(-)pi(+))/B(Xi(+)(c) -> Xi(-)pi(+)pi(+)) = 0.48 +/- 0.20, and B(Xi(+)(c) -> Sigma(-)pi(+)pi(+))/B(Xi(+)(c) -> Sigma(-)pi(+)pi(+)) = 0.18 +/- 0.09, respectively. We also report branching ratios for the same decay modes of the Delta(+)(c) relative to Delta(+)(c) -> pK(-)pi(+.) (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PHENIX has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c(2) in p + p collisions at root s = 200 GeV. The contributions from light meson decays to e(+)e(-) pairs have been determined based on measurements of hadron production cross sections by PHENIX. Within the systematic uncertainty of similar to 20% they account for all e(+)e(-) pairs in the mass region below similar to 1 GeV/c(2). The e(+)e(-) pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) pb. which is consistent with QCD calculations and measurements of single leptons by PHENIX. (C) 2008 Elsevier BV. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type la supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang(1); in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ((4)(He) over bar), also known as the anti-alpha ((alpha) over bar), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the alpha-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level(2). Antimatter nuclei with B -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon(3-5). Here we report the observation of (4)<(He) over bar, the heaviest observed antinucleus to date. In total, 18 (4)(He) over bar counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic(7) and coalescent nucleosynthesis(8) models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of (4)(He) over bar in cosmic radiation.