51 resultados para Discrete-time linear systems
Resumo:
A model predictive controller (MPC) is proposed, which is robustly stable for some classes of model uncertainty and to unknown disturbances. It is considered as the case of open-loop stable systems, where only the inputs and controlled outputs are measured. It is assumed that the controller will work in a scenario where target tracking is also required. Here, it is extended to the nominal infinite horizon MPC with output feedback. The method considers an extended cost function that can be made globally convergent for any finite input horizon considered for the uncertain system. The method is based on the explicit inclusion of cost contracting constraints in the control problem. The controller considers the output feedback case through a non-minimal state-space model that is built using past output measurements and past input increments. The application of the robust output feedback MPC is illustrated through the simulation of a low-order multivariable system.
Resumo:
This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables - possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Objective: The objective of this study was to evaluate the influence of the surface treatment and acid conditioning (AC) time of bovine sclerotic dentine on the micro-tensile bond strength (mu-TBS) to an etch and rinse adhesive system. Materials and method: Thirty-six bovine incisors were divided into six groups (n = 6): G1 sound dentine submitted to AC for 15 s; G2-G6 sclerotic dentine: G2-AC for 15 s; G3-AC for 30 s; G4-EDTA and AC for 15 s; G5-diamond bur and AC for 15 s; G6-diamond paste and AC for 15 s. An adhesive system was applied to the treated dentine surfaces followed by a hybrid composite inserted in increments and light cured. After 24 h storage in water at 37 degrees C, the specimens were perpendicularly cut with a low-speed diamond saw to obtain beams (0.8 mm x 0.8 mm cross-sectional dimensions) for mu-TBS testing. Data was compared by ANOVA followed by Tukey`s test (P <= 0.05). Results: The mean L-TBS was G1: 18.87 +/- 5.36 MPa; G2: 12.94 +/- 2.09 MPa; G3: 11.73 +/- 0.64 MPa; G4: 11.14 +/- 1.50 MPa; G5: 22.75 +/- 4.10 MPa; G6: 22.48 +/- 2.71 MPa. G1, G5 and G6 presented similar bond strengths significantly higher than those of all other groups. Conclusion: The surface treatment of sclerotic dentine significantly influenced the bond strength to an adhesive system. Mechanical treatment, either using a diamond bur or a diamond paste was able to improve bonding to bovine sclerotic dentine, reaching values similar to bonding to sound dentine. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To compare and evaluate longitudinally the dental arch relationships from 4.5 to 13.5 years of age with the Bauru-BCLP Yardstick in a large sample of patients with bilateral cleft lip and palate (BCLP). Design: Retrospective longitudinal intercenter outcome study. Patients: Dental casts of 204 consecutive patients with complete BCLP were evaluated at 6, 9, and 12 years of age. All models were identified only by random identification numbers. Setting: Three cleft palate centers with different treatment protocols. Main Outcome Measures: Dental arch relationships were categorized with the Bauru-BCLP yardstick. Increments for each interval (from 6 to 9 years, 6 to 12 years, and 9 to 12 years) were analyzed by logistic and linear regression models. Results: There were no significant differences in outcome measures between the centers at age 12 or at age 9. At age 6, center B showed significantly better results (p = .027), but this difference diminished as the yardstick score for this group increased over time (linear regression analysis), the difference with the reference category (center C, boys) for the intervals 6 to 12 and 9 to 12 years being 10.4% (p = .041) and 12.9% (p = .009), respectively. Conclusions: Despite different treatment protocols, dental arch relationships in the three centers were comparable in final scores at age 9 and 12 years. Delaying hard palate closure and employing infant orthopedics did not appear to be advantageous in the long run. Premaxillary osteotomy employed in center B appeared to be associated with less favorable development of the dental arch relationship between 9 and 12 years.
Resumo:
A particle filter method is presented for the discrete-time filtering problem with nonlinear ItA ` stochastic ordinary differential equations (SODE) with additive noise supposed to be analytically integrable as a function of the underlying vector-Wiener process and time. The Diffusion Kernel Filter is arrived at by a parametrization of small noise-driven state fluctuations within branches of prediction and a local use of this parametrization in the Bootstrap Filter. The method applies for small noise and short prediction steps. With explicit numerical integrators, the operations count in the Diffusion Kernel Filter is shown to be smaller than in the Bootstrap Filter whenever the initial state for the prediction step has sufficiently few moments. The established parametrization is a dual-formula for the analysis of sensitivity to gaussian-initial perturbations and the analysis of sensitivity to noise-perturbations, in deterministic models, showing in particular how the stability of a deterministic dynamics is modeled by noise on short times and how the diffusion matrix of an SODE should be modeled (i.e. defined) for a gaussian-initial deterministic problem to be cast into an SODE problem. From it, a novel definition of prediction may be proposed that coincides with the deterministic path within the branch of prediction whose information entropy at the end of the prediction step is closest to the average information entropy over all branches. Tests are made with the Lorenz-63 equations, showing good results both for the filter and the definition of prediction.
Resumo:
In this paper, we propose a content selection framework that improves the users` experience when they are enriching or authoring pieces of news. This framework combines a variety of techniques to retrieve semantically related videos, based on a set of criteria which are specified automatically depending on the media`s constraints. The combination of different content selection mechanisms can improve the quality of the retrieved scenes, because each technique`s limitations are minimized by other techniques` strengths. We present an evaluation based on a number of experiments, which show that the retrieved results are better when all criteria are used at time.
Resumo:
We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D R(d) until it hits the boundary and bounces randomly inside, according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord ""picked at random"" in D, and we study the angle of intersection of the process with a (d - 1) -dimensional manifold contained in D.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.
Resumo:
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
Resumo:
We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.
Resumo:
In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
Resumo:
We describe a one-time signature scheme based on the hardness of the syndrome decoding problem, and prove it secure in the random oracle model. Our proposal can be instantiated on general linear error correcting codes, rather than restricted families like alternant codes for which a decoding trapdoor is known to exist. (C) 2010 Elsevier Inc. All rights reserved,
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.