36 resultados para Copy
Resumo:
Background: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. Methods: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. Results: The 15q13.3 microdeletion in our series was associated with a highly variable intra-and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. Conclusions: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.
Resumo:
Spinal muscular atrophy (SMA), the leading genetic cause of death in childhood, is an autosomal recessive neuromuscular disorder characterized by progressive muscle weakness, associated with deletions of the survival motor neuron (SMN) gene identified and mapped to chromosome 5q13. SMN is present in two highly homologous copies (SMN1 and SMN2). In the general population, normal individuals (noncarriers) have at least one telomeric (SMN1) copy, and 5% of them have no copies of SMN2. Approximately 95% of SMA patients carry homologous deletions of SMN1 exon(s) 7 (and 8). SMN1 and SMN2 exons 7 and 8 differ only by 1 bp each, and SMA diagnosis might be performed by single-strand conformational polymorphism, PCR amplification followed by restriction fragment length polymorphism (RFLP), multiple ligation-dependent probe amplification, or realtime PCR of SMNs exons 7 and 8. We developed a simpler and cost-effective method to detect SMN1 exon 7 deletion based on allele-specific amplification PCR.
Resumo:
We present the first comprehensive study, to our knowledge, on genomic chromosomal analysis in syndromic craniosynostosis. In total, 45 patients with craniosynostotic disorders were screened with a variety of methods including conventional karyotype, microsatellite segregation analysis, subtelomeric multiplex ligation-dependent probe amplification) and whole-genome array-based comparative genome hybridisation. Causative abnormalities were present in 42.2% (19/45) of the samples, and 27.8% (10/36) of the patients with normal conventional karyotype carried submicroscopic imbalances. Our results include a wide variety of imbalances and point to novel chromosomal regions associated with craniosynostosis. The high incidence of pure duplications or trisomies suggests that these are important mechanisms in craniosynostosis, particularly in cases involving the metopic suture.
Resumo:
We used high-resolution SNP genotyping to identify regions of genomic gain and loss in the genomes of 212 medulloblastomas, malignant pediatric brain tumors. We found focal amplifications of 15 known oncogenes and focal deletions of 20 known tumor suppressor genes (TSG), most not previously implicated in medulloblastoma. Notably, we identified previously unknown amplifications and homozygous deletions, including recurrent, mutually exclusive, highly focal genetic events in genes targeting histone lysine methylation, particularly that of histone 3, lysine 9 (H3K9). Post-translational modification of histone proteins is critical for regulation of gene expression, can participate in determination of stem cell fates and has been implicated in carcinogenesis. Consistent with our genetic data, restoration of expression of genes controlling H3K9 methylation greatly diminishes proliferation of medulloblastoma in vitro. Copy number aberrations of genes with critical roles in writing, reading, removing and blocking the state of histone lysine methylation, particularly at H3K9, suggest that defective control of the histone code contributes to the pathogenesis of medulloblastoma.
Resumo:
The HLA-G gene is predominantly expressed at the maternal-fetal interface and has been associated with maternal-fetal tolerance. The HLA-G*0113N is a null allele defined by the insertion of a premature stop codon at exon 2, observed in a single Ghanaian individual. Likewise the G*0105N allele, the occurrence of the HL4-G*0113N in a population from an area with high pathogen load suggests that the reduced HLA-G expression in G*0113N heterozygous placentas could improve the intrauterine defense against infections. The presence of the G*0113N allele here was investigated in 150 Amerindians from five isolated tribes that inhabit the Central Amazon and in 295 admixed individuals from the State of Sao Paulo, Southeastern Brazil, previously genotyped for HLA-G. No copy of the G*0113N null allele was found in both population samples by exon 2 sequence-based analysis, reinforcing its restricted occurrence in Africa. (C) 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Resumo:
Adrenocortical tumors (ACT) are rare neoplasms of the adrenal glands accounting for 0.2% of all pediatric cancers. However, the incidence of ACT in South Brazilian children is 10 to 15 times greater than the worldwide incidence. Comparative genomic hybridization studies have revealed the presence of a high degree of chromosomal instability in ACT. We evaluated 16 ACT, 8 of them carcinomas and 8 adenomas. The presence of changes in DNA copy numbers was determined by comparative genomic hybridization, and the findings were validated by real-time polymerase chain reaction on the basis of IGF-II gene expression. The adenomas showed a mean of 19.7 imbalances per case, with the most frequent gain and loss being 4p15.1-p15.3 and 20p11.2-p13.2, respectively. The carcinomas presented with a mean of 35.5 imbalances per case, with the more frequent gain being 2q14.1-q24.3 and the more frequent losses being 3q21-q26.2, 20q12-qter, and 22q11.2-q13.3. The most frequent imbalances in both adenomas and carcinomas were gains of 1p21-p31.2, 2p12-p21 and loss of 20p11.2-p12. The expression of IGF-II mRNA (11p15.5) was higher in samples that presented with a gain of this region. It has been established that great genomic instability exists in pediatric ACT.