68 resultados para COMPUTER-AIDED MOLECULAR DESIGN
Resumo:
Pterins are members of a family of heterocyclic compounds present in a wide variety of biological systems and may exist in two forms, corresponding to an acid and a basic tautomer. In this work, the proton transfer reaction between these tautomeric forms was investigated in the gas phase and in aqueous solution. In gas phase, the intramolecular mechanism was carried out for die isolated pterin by quantum mechanical second-order Moller-Plesset Perturbation theory (MP2/aug-cc-pVDZ) calculations and it indicates that the acid form is more stable than the basic form by -1.4 kcal/mol with a barrier of 34.2 kcal/mol with respect to the basic form. In aqueous solution, the role of the water molecules in the proton transfer reaction was analyzed in two separated parts, the direct participation of one water molecule in the reaction path, called water-assisted mechanism, and the complementary participation of the aqueous solvation. The water-assisted mechanism was carried out for one pterin-water cluster by quantum mechanical calculations and it indicates that the acid form is still more stable by -3.3 kcal/mol with a drastic reduction of 70% of the barrier, The bulk solution effect on the intramolecular and water-assisted mechanisms was included by free energy perturbation implemented on Monte Carlo simulations. The bulk water effect is found to be substantial and decisive when the reaction path involves the water-assisted mechanism. In this case, the free energy barrier is only 6.7 kcal/mol and the calculated relative Gibbs free energy for the two tautomers is -11.2 kcal/mol. This value is used to calculate the pK(a) value of 8.2 +/- 0.6 that is in excellent agreement with the experimental result of 7.9.
Resumo:
We described herein the molecular design of novel in vivo anti-inflammatory 6-methanesulfonamide-3,4-methylenedioxyphenyl-N-acylhydrazone derivatives (1) planned by applying the molecular hybridization approach. This work also points out to the discovery of LASSBio-930 (1c) as a novel anti-inflammatory and anti-hyperalgesic prototype, which was able to reduce carrageenan-induced rat paw edema with an ED(50) of 97.8 mu mol/kg, acting mainly as a non-selective COX inhibitor. (C) 2009 Elsevier Ltd. All rights reserved.
Geranylation of benzoic acid derivatives by enzymatic extracts from Piper crassinervium (Piperaceae)
Resumo:
The ability to carry out geranylations on aromatic substrates using enzymatic extracts from the leaves of Piper crassinervium (Piperaceae) was evaluated. A literature analysis pointed out its importance as a source of prenylated bioactive molecules. The screening performed on aromatic acceptors (benzoic acids, phenols and phenylpropanoids) including geranyl diphosphate as prenyl donor, showed the biotransformation of the 3,4-dihydroxybenzoic acid by the crude extract, and the p-hydroxybenzoic acid by both the microsomal fraction and the crude extract, after treating leaves with glucose. The analysis of the products allowed the identification of C- and O-geranylated derivatives, and the protease (subtilisin and pepsin) inhibition performed on the O-geranylated compounds showed weak inhibition. Electrophoretic profiles indicated the presence of bands/spots among 56-58 kDa and pI 6-7, which are compatible with prenyltransferases. These findings show that P. crassinervium could be considered as a source of extracts with geranyltransferase activity to perform biotransformations on aromatic substrates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Chagas disease is nowadays the most serious parasitic health problem. This disease is caused by Trypanosoma cruzi. The great number of deaths and the insufficient effectiveness of drugs against this parasite have alarmed the scientific community worldwide. In an attempt to overcome this problem, a model for the design and prediction of new antitrypanosomal agents was obtained. This used a mixed approach, containing simple descriptors based on fragments and topological substructural molecular design descriptors. A data set was made up of 188 compounds, 99 of them characterized an antitrypanosomal activity and 88 compounds that belong to other pharmaceutical categories. The model showed sensitivity, specificity and accuracy values above 85%. Quantitative fragmental contributions were also calculated. Then, and to confirm the quality of the model, 15 structures of molecules tested as antitrypanosomal compounds (that we did not include in this study) were predicted, taking into account the information on the abovementioned calculated fragmental contributions. The model showed an accuracy of 100% which means that the ""in silico"" methodology developed by our team is promising for the rational design of new antitrypanosomal drugs. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 882-894. 2010
Resumo:
Diabetes mellitus (DM) is a disease that affects a large number of people, and the number of problems associated with the disease has been increasing in the past few decades. These problems include cardiovascular disorders, blindness and the eventual need to amputate limbs. Therefore, the quality of life for people living with DM is less than it is for healthy people. In several cases, metabolic syndrome (MS), which can be considered a disturbance of the lipid metabolism, is associated with DM. In this work, two drugs used to treat DM, pioglitazone and rosiglitazone, were studied using theoretical methods, and their molecular properties were related to the biological activity of these drugs. From the results, it was possible to correlate the properties of each substance-particularly electronic properties-with the biological interactions that are linked to their pharmacological effects. These results suggest that there are future prospects for designing or developing new drugs based on the correlation between theoretical and experimental properties.
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
Molecular modi. cation is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N`-(benzofuroxan-5-yl) methylene] benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological pro. le. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 mu g/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
Human parasitic diseases are the foremost threat to human health and welfare around the world. Trypanosomiasis is a very serious infectious disease against which the currently available drugs are limited and not effective. Therefore, there is an urgent need for new chemotherapeutic agents. One attractive drug target is the major cysteine protease from Trypanosoma cruzi, cruzain. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted on a series of thiosemicarbazone and semicarbazone derivatives as inhibitors of cruzain. Molecular modeling studies were performed in order to identify the preferred binding mode of the inhibitors into the enzyme active site, and to generate structural alignments for the three-dimensional quantitative structure-activity relationship (3D QSAR) investigations. Statistically significant models were obtained (CoMFA. r(2) = 0.96 and q(2) = 0.78; CoMSIA, r(2) = 0.91 and q(2) = 0.73), indicating their predictive ability for untested compounds. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the information gathered from the 3D CoMFA and CoMSIA contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of cruzain inhibitors, and should be useful for the design of new structurally related analogs with improved potency. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.
Resumo:
The glycolytic enzyme glyceraldehyde-3 -phosphate dehydrogenase (GAPDH) is as an attractive target for the development of novel antitrypanosomatid agents. In the present work, comparative molecular field analysis and comparative molecular similarity index analysis were conducted on a large series of selective inhibitors of trypanosomatid GAPDH. Four statistically significant models were obtained (r(2) > 0.90 and q(2) > 0.70), indicating their predictive ability for untested compounds. The models were then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results. Molecular modeling studies provided further insight into the structural basis for selective inhibition of trypanosomatid GAPDH.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.
Resumo:
An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.
Resumo:
Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network. Copyright (c) 2008 J. R. C. Piqueira and F. B. Cesar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.