132 resultados para Brain Natriuretic Peptide


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [peptide, however, alleviated MK-801-induced inhibition of nicotinic acetylcholine receptor activity. Although more data are needed for understanding the mechanism of the BPP-10c effect on nicotinic receptor activity and its relationship with the anti-hypertensive activity, this work reveals possible therapeutic applications for BPP-10c in establishing normal acetylcholine receptor activity. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301: F355-F363, 2011. First published May 18, 2011; doi: 10.1152/ajprenal.00729.2010.-Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 mu g.kg(-1).min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic infusion of human amyloid-beta 1-40 (A beta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of A beta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of A beta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of A beta. Male C57BI/6 J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12 weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550 pmol, 0.12 mu L/h, 28 days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (TO), 7 and 35 days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt = 59.7 +/- 6.7%; CkoB1 = 46.7 +/- 4.0%; CkoB2 = 64.4 +/- 5.8%) and A beta (A beta wt = 66.0 +/- 3.0%; A beta koB1 = 66.8 +/- 8.2%; A beta koB2 = 58.7 +/- 5.9%) groups. In T7, A beta koB2 showed a significant decrease in CAR (41.0 +/- 8.6%) compared to the control-koB2 (72.8 +/- 2.2%, P <0.05). In T35, a significant decrease (P <0.05) was observed in A beta wt (40.7 +/- 3.3%) and A beta koB2 (41.2 +/- 10.7%) but not in the A beta koB1 (64.0 +/- 14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could playan important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Neuropeptides are produced from larger precursors by limited proteolysis, first by endopeptidases and then by carboxypeptidases. Major endopeptidases required for these cleavages include prohormone convertase (PC) 1/3 and PC2. In this study, quantitative peptidomics analysis was used to characterize the specific role PC1/3 plays in this process. Peptides isolated from hypothalamus, amygdala, and striatum of PC1/3 null mice were compared with those from heterozygous and wild-type mice. Extracts were labeled with stable isotopic tags and fractionated by HPLC, after which relative peptide levels were determined using tandem mass spectrometry. In total, 92 peptides were found, of which 35 were known neuropeptides or related peptides derived from 15 distinct secretory pathway proteins: 7B2, chromogranin A and B, cocaine- and amphetamine-regulated transcript, procholecystokinin, proenkephalin, promelanin concentrating hormone, proneurotensin, propituitary adenylate cyclase-activating peptide, proSAAS, prosomatosatin, provasoactive intestinal peptide, provasopressin, secretogranin III, and VGF. Among the peptides derived from these proteins, similar to 1/3 were decreased in the PC1/3 null mice relative to wild-type mice, similar to 1/3 showed no change, and similar to 1/3 increased in PC1/3 null. Cleavage sites were analyzed in peptides that showed no change or that decreased in PC1/3 mice, and these results were compared with peptides that showed no change or decreased in previous peptidomic studies with PC2 null mice. Analysis of these sites showed that while PC1/3 and PC2 have overlapping substrate preferences, there are particular cleavage site residues that distinguish peptides preferred by each PC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is up-regulated in some but not all Cpefat/fat mouse brain regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemopressin (Hp), a 9-residue alpha-hemoglobin-derived peptide, was previously reported to function as a CB(1) cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N-terminally extended forms of Hp containing either three (RVD-Hp alpha) or two (VD-Hp alpha) additional amino acids, as well as a beta-hemoglobinderived peptide with sequence similarity to that of hemopressin (VD-Hp beta). Characterization of the alpha-hemoglobin-derived peptides using binding and functional assays shows that in contrast to Hp, which functions as a CB(1) cannabinoid receptor antagonist, both RVD-Hp alpha and VD-Hp alpha function as agonists. Studies examining the increase in the phosphorylation of ERK1/2 levels or release of intracellular Ca(2+) indicate that these peptides activate a signal transduction pathway distinct from that activated by the endo-cannabinoid, 2-arachidonoylglycerol, or the classic CB(1) agonist, Hu-210. This finding suggests an additional mode of regulation of endogenous cannabinoid receptor activity. Taken together, these results suggest that the CB(1) receptor is involved in the integration of signals from both lipid-and peptide-derived signaling molecules.-Gomes, I., Grushko, J. S., Golebiewska, U., Hoogendoorn, S., Gupta, A., Heimann, A. S., Ferro, E. S., Scarlata, S., Fricker, L. D., Devi, L. A. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 23, 3020-3029 (2009). www.fasebj.org

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na(+)/H(+) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647-F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009.-The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased similar to 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant brain tumor experimental models tend to employ cells that are immunologically compatible with the receptor animal. In this study, we have proposed an experimental model of encephalic tumor development by injecting C6 cells into athymic Rowett rats, aiming at reaching a model which more closely resembles to the human glioma tumor. In our model, we observed micro-infiltration of tumor cell clusters in the vicinity of the main tumor mass, and of more distal isolated tumor cells immersed in normal encephalic parenchyma. This degree of infiltration is superior to that usually observed in other C6 models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial peptide indolicidin (IND) and the mutant CP10A in hydrated micelles were studied using molecular dynamics simulations in order to observe whether the molecular dynamics and experimental data could be sufficiently correlated and a detailed description of the interaction of the antimicrobial peptides with a model of the membrane provided by a hydrated micelle system could be obtained. In agreement with the experiments, the simulations showed that the peptides are located near the surface of the micelles. Peptide insertions agree with available experimental data, showing deeper insertion of the mutant compared with the peptide IND. Major insertion into the hydrophobic core of the micelle by all tryptophan and mutated residues of CP10A in relation to IND was observed. The charged residues of the terminus regions of both peptides present similar behavior, indicating that the major differences in the interactions with the micelles of the peptides IND and CP10A occur in the case of the hydrophobic residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The successful integration of stem cells in adult brain has become a central issue in modern neuroscience. In this study we sought to test the hypothesis that survival and neurodifferentiation of mesenchymal stem cells (MSCs) may be dependent upon microenvironmental conditions according to the site of implant in the brain. Methods: MSCs were isolated from adult rats and labeled with enhanced-green fluorescent protein (eGFP) lentivirus. A cell suspension was implanted stereotactically into the brain of 50 young rats, into one neurogenic area (hippocampus), and into another nonneurogenic area (striatum). Animals were sacrificed 6 or 12 weeks after surgery, and brains were stained for mature neuronal markers. Cells coexpressing NeuN (neuronal specific nuclear protein) and GFP (green fluorescent protein) were counted stereologically at both targets. Results: The isolated cell population was able to generate neurons positive for microtubule-associated protein 2 (MAP2), neuronal-specific nuclear protein (NeuN), and neurofilament 200 (NF200) in vitro. Electrophysiology confirmed expression of voltage-gated ionic channels. Once implanted into the hippocampus, cells survived for up to 12 weeks, migrated away from the graft, and gave rise to mature neurons able to synthesize neurotransmitters. By contrast, massive cell degeneration was seen in the striatum, with no significant migration. Induction of neuronal differentiation with increased cyclic adenosine monophosphate in the culture medium before implantation favored differentiation in vivo. Conclusions: Our data demonstrated that survival and differentiation of MSCs is strongly dependent upon a permissive microenvironment. Identification of the pro-neurogenic factors present in the hippocampus could subsequently allow for the integration of stem cells into nonpermissive areas of the central nervous system.