40 resultados para Bivalent transitions metals
Resumo:
Successful coupling of electrochemical preconcentration (EPC) to capillary electrophoresis (CE) with contactless conductivity detection (C(4)D) is reported for the first time. The EPC-CE interface comprises a dual glassy carbon electrode (GCE) block, a spacer and an upper block with flow inlet and outlet, pseudo-reference electrode and a fitting for the CE silica column, consisting of an orifice perpendicular to the surface of a glassy carbon electrode with a bushing inside to ensure a tight press fit. The end of the capillary in contact with the GCE is slant polished, thus defining a reproducible distance from the electrode surface to the column bore. First results with EPC-CE-C(4)D are very promising, as revealed by enrichment factors of two orders of magnitude for Tl, Cu, Pb and Cd ion peak area signals. Detection limits for 10 min deposition time fall around 20 nmol L(-1) with linear calibration curves over a wide range. Besides preconcentration, easy matrix exchange between accumulation and stripping/injection favors procedures like sample cleanup and optimization of pH, ionic strength and complexing power. This was demonstrated for highly saline samples by using a low conductivity buffer for stripping/injection to improve separation and promote field-enhanced sample stacking during electromigration along the capillary. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the presence of nutrients and toxic elements in coffees cultivated during the process of conversion, on organic agriculture, in southwest Bahia, Brazil. Levels of the nutrients and toxic elements were determined in samples of soils and coffee tissues from two transitional organic farms by atomic absorption spectrometry (FAAS). The metals in soil samples were extracted by Mehlich1 and USEPA-3050 procedures. Coffee samples from both farms presented relatively high levels of Cd, Zn and Cu (0.75,45.4 and 14.9 mu g g(-1). respectively), but were still below the limits specified by the Brazilian Food Legislation. The application of statistical methods showed that this finding can be attributed to the addition of high amounts of organic matter during the flowering tree period which can act on the bioavailability of metal ions in soils. (C) 2009 Elsevier Ltd. All rights reserved.
Spectroscopic investigation of the interactions between emeraldine base polyaniline and Eu(III) ions
Resumo:
The interactions of emeraldine base form of polyaniline (EB-PANI) and Eu(III) ions in 1-methyl-2-pyrrolidinone (NMP) solution and in films have been investigated by UV-vis-NIR, resonance Raman. luminescence and electron paramagnetic resonance (EPR) spectroscopies. These spectroscopic techniques allowed to characterize quinone and semiquinone segments in the polymeric chains. and the oxidation state of europium ions in Eu-PANI samples. For high values of Eu(III)/N molar ratio (24/1) the presence of a weak polaronic absorption band at 980 nm in UV-vis-NIR spectrum and the observation of bands at 1330 and 1378 (nu(center dot)(C-N+)) cm(-1) due to emeraldine salt in the Raman spectrum at 1064 nm indicate a low doping degree. Oxidation of EB-PANI to pernigraniline base (PB-PANI) occurs in diluted solutions. The experimental data showed that the solvent plays an important role on the nature of formed species. The narrow EPR signal at g = 2.006 (line width 8G) confirms the presence of PANI radical cations in Eu-PANI film. The absence of broad signal characteristic of Eu(II) in EPR spectrum suggested that europium ions are primarily at Eu(III) oxidation state. The luminescence spectra of Eu-PANI film presented emission bands at 405 and 418 nm assigned to PANI moieties and bands at 594,615 and 701 nm assigned to (5)D(0) -> (7)F(J) (J = 1, 2 and 4, respectively) transitions of Eu(III). EPR and photoluminescence data confirm that europium ions are mainly in Eu(III) oxidation state in Eu(III)/PANI films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The anionic complexes [Cu(L(1-))(3)](1-), L(-) = dopasemiquinone or L-dopasemiqui none, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the vCC + vCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g= 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coconut water is a natural isotonic, nutritive, and low-caloric drink. Preservation process is necessary to increase its shelf life outside the fruit and to improve commercialization. However, the influence of the conservation processes, antioxidant addition, maturation time, and soil where coconut is cultivated on the chemical composition of coconut water has had few arguments and studies. For these reasons, an evaluation of coconut waters (unprocessed and processed) was carried out using Ca, Cu, Fe, K, Mg, Mn, Na, Zn, chloride, sulfate, phosphate, malate, and ascorbate concentrations and chemometric tools. The quantitative determinations were performed by electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and capillary electrophoresis. The results showed that Ca, K, and Zn concentrations did not present significant alterations between the samples. The ranges of Cu, Fe, Mg, Mn, PO (4) (3-) , and SO (4) (2-) concentrations were as follows: Cu (3.1-120 A mu g L(-1)), Fe (60-330 A mu g L(-1)), Mg (48-123 mg L(-1)), Mn (0.4-4.0 mg L(-1)), PO (4) (3-) (55-212 mg L(-1)), and SO (4) (2-) (19-136 mg L(-1)). The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to differentiate unprocessed and processed samples. Multivariated analysis (PCA and HCA) were compared through one-way analysis of variance with Tukey-Kramer multiple comparisons test, and p values less than 0.05 were considered to be significant.
Resumo:
The catalytic activity of Ni/CeO(2)-Al(2)O(3) catalysts modified with noble metals (Pt, Ir, Pd and Ru) was investigated for the steam reform of ethanol and glycerol. The catalysts were characterized by the following techniques: Energy-dispersive X-ray, BET, X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of CeO(2) dispersed on alumina. The promoting effect of noble metals included a decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state along the reforming reaction, increasing the ethanol and glycerol conversions and decreasing the coke formation. The higher catalytic performance for the ethanol steam reforming at 600 degrees C and glycerol steam reforming was obtained for the NiPd and NiPt catalysts, respectively, which presented an effluent gaseous mixture with the highest H(2) yield with reasonably low amounts of CO. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The performance of noble metal (Pt, Ru, Ir)-promoted Co/MgAl(2)O(4) catalysts for the steam reforming of ethanol was investigated. The catalysts were characterized by energy-dispersive X-ray spectroscopy, Xray diffraction, UV-vis diffuse reflectance spectroscopy, temperature-programmed reduction, temperature-programmed oxidation and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive cobalt aluminate was suppressed by the presence of a MgAl(2)O(4) spinel phase. The effects of the noble metals included a marked lowering of the reduction temperatures of the cobalt surface species interacting with the support. It was seen that the addition of noble metal stabilized the Co sites in the reduced state throughout the reaction. Catalytic performance was enhanced in the promoted catalysts, particularly CoRu/MgAl(2)O(4), which showed the highest selectivity for H(2) production. (C) 2009 Elsevier B.V. All rights reserved.
Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals
Resumo:
The catalytic activity of Ni/La(2)O(3)-Al(2)O(3) Catalysts modified with noble metals(Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by ICP, S(BFT), X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of La(2)O(3) dispersed on the alumina. The promoting effect of noble metals included a marked decrease in the reduction temperatures of NiO species interacting with the support. due to the hydrogen spillover effect, facilitating greatly the reduction of the promoted catalysts. it was seen that the addition of noble metal stabilized the Ni sites in the reduced state throughout the reaction, increasing ethanol conversion and decreasing coke formation, irrespective of the nature or loading of the noble metal. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of noble metal addition on the catalytic properties of Co/Al2O3 was evaluated for the steam reforming of methane. Co/Al2O3 catalysts were prepared with addition of different noble metals (Pt, Pd, Ru and Ir 0.3 wt.%) by a wetness impregnation method and characterized by UV-vis spectroscopy, temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) of the reduced catalysts. The UV-vis spectra of the samples indicate that, most likely, large amounts of the supported cobalt form Co species in which cobalt is in octahedral and tetrahedral symmetries. No peaks assigned to cobalt species from aluminate were found for the promoted and unpromoted cobalt catalysts. TPO analyses showed that the addition of the noble metals on the Co/Al2O3 catalyst leads to a more stable metallic state and less susceptible to the deactivation process during the reforming reaction. The Co/Al2O3 promoted with Pt showed higher stability and selectivity for H(2)production during the methane steam reforming. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The catalytic performance of Co/Al2O3 catalysts promoted with small amounts noble metals (Pt, Pd, Ru, Ir) for steam reforming of ethanol (SRE) has been investigated. The catalysts were characterized by the energy dispersive X-ray, X-ray diffraction, BET surface area, X-ray absorption fine structure and temperature reduction programmed techniques. The results showed that the promoting effect of noble metals included a marked decrease of the reduction temperatures of both Co3O4 and cobalt surface species interacting with the support due to the hydrogen spillover effect, leading to a significant increase of the reducibilities of the promoted catalysts. The better catalytic performance for the ethanol steam reforming at 400 degrees C was obtained for the CoRu/Al2O3 catalyst, which presented an effluent gaseous mixture with the highest H, selectivity and the reasonable low CO formation. (C) 2007 Published by Elsevier B.V.