79 resultados para Binding Peptides
Resumo:
Protein transduction domains (PTDs) were recently demonstrated to increase the penetration of the model peptide P20 when the PTD and P20 were covalently attached. Here, we evaluated whether non-covalently linked PTDs were capable of increasing the skin penetration of P20. Two different PTDs were studied: YARA and WLR. Porcine ear skin mounted in a Franz diffusion cell was used to assess the penetration of P20 in the stratum corneum (SC) and viable skin (VS); VS consists of dermis and epidermis without SC. The transdermal delivery of P20 was also assessed. At 1 mM, YARA promoted a 2.33-fold increase in the retention of P20 in the SC but did not significantly increase the amount of P20 that reached VS. WLR significantly increased (2.88-fold) the penetration of P20 in VS. Compared to the non-attached form, the covalently linked WLR fragment was two times more effective in promoting the penetration of P20 into VS. None of the PTDs promoted transdermal delivery of P20 at 4 h post-application. It was concluded that selected non-covalently linked PTDs can be used as a penetration enhancer, but greater skin penetration efficiency can be achieved by covalently binding the PTD to the therapeutic agent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)S) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M-r similar to 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2S from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)S, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA(2)S induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This study investigated the effect of a pool of peptides, isolated from venom of Crotalus durissus terrificus (South American rattlesnake) on glucose concentration in C57BL/6 mice fed on a high-fat diet for 6 weeks. The pool of peptides (molecular mass around of 10 kDa) was obtained using a MidJet apparatus with a cartridge of 10 KDa. The peptide pool was injected intraperitoneally in mice in a single dose (0.5 mg/animal) or multiple doses (0.2 mg/dose). After predetermined times (30, 60, 90 and 120 min) post injections, venous blood samples were collected for enzymatic measurement of serum glucose using a commercial glucose kit (glucose oxidase method). High-fat fed mice showed an increase in blood glucose concentration, in comparison with mice fed on the chow diet. Thirty minutes after a single dose of the peptide pool, high-fat fed animals showed a significant decrease (similar to 47%) in glycemia. However, the glucose level increased again at 60 and 120 min. Conversely, after multiple injections of the pool of peptides administered every 30 min, the blood glucose concentration in the high-fat mice was significantly decreased (similar to 37%) and remained at low levels until 120 min. These results suggest that the tested pool of peptides from Crotalus durissus terrificus contained a peptide (or peptides) with a beneficial role on glucose-lowering action of high-fat fed mice.
Resumo:
The objective of this investigation was to examine in a systematic manner the influence of plasma protein binding on in vivo pharmacodynamics. Comparative pharmacokinetic-pharmacodynamic studies with four beta blockers were performed in conscious rats, using heart rate under isoprenaline-induced tachycardia as a pharmacodynamic endpoint. A recently proposed mechanism-based agonist-antagonist interaction model was used to obtain in vivo estimates of receptor affinities (K(B),(vivo)). These values were compared with in vitro affinities (K(B),(vitro)) on the basis of both total and free drug concentrations. For the total drug concentrations, the K(B),(vivo) estimates were 26, 13, 6.5 and 0.89 nM for S(-)-atenolol, S(-)-propranolol, S(-)-metoprolol and timolol. The K(B),(vivo) estimates on the basis of the free concentrations were 25, 2.0, 5.2 and 0.56 nM, respectively. The K(B),(vivo)-K(B),(vitro) correlation for total drug concentrations clearly deviated from the line of identity, especially for the most highly bound drug S(-)-propranolol (ratio K(B),(vivo)/K(B),(vitro) similar to 6.8). For the free drug, the correlation approximated the line of identity. Using this model, for beta-blockers the free plasma concentration appears to be the best predictor of in vivo pharmacodynamics. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3816-3828, 2009
Resumo:
Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL-1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1-0.2 mu m2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.
Resumo:
The blue crab, Callinectes danae, tolerates exposure to a wide salinity range employing mechanisms of compensatory ion uptake when in dilute media. Although the gill (Na(+), K(+))-ATPase is vital to hyperosmoregulatory ability, the interactions occurring at the sites of ATP binding on the molecule itself are unknown. Here, we investigate the modulation by Na(+) and K(+) of homotropic interactions between the ATP-binding sites, and of phosphoenzyme formation of the (Na(+),K(+))-ATPase from the posterior gills of this euryhaline crab. The contribution of the high- and low-affinity ATP-binding sites to maximum velocity was similar for both Na(+) and K(+). However, in contrast to Na(+), a threshold K(+) concentration triggers the appearance of the high-affinity binding sites, displacing the saturation curve to lower ATP concentrations. Further, a low-affinity site for phosphorylation is present on the enzyme. These findings reveal notable differences in the catalytic mechanism of the crustacean (Na(+),K(+))-ATPase compared to the vertebrate enzyme. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this study the interaction between magnetic nanoparticles (MNPs) surface-coated with meso-2,3-dimercaptosuccinic acid (DMSA) with both bovine serum albumin (BSA) and human serum albumin (HSA) was investigated. The binding of the MNP-DMSA was probed by the fluorescence quenching of the BSA and HSA tryptophan residue. Magnetic resonance and light microscopy analyses were carried out in in vivo tests using female Swiss mice. The binding constants (K(b)) and the complex stoichiometries (n) indicate that MNP-DMSA/BSA and MNP-DMSA/HSA complexes have low association profiles. After five minutes following intravenous injection of MNP-DMSA into mice`s blood stream we found the lung firstly target by the MNP-DMSA, followed by the liver in a latter stage. This finding suggests that the nanoparticle`s DMSA-coating process probably hides the thiol group, through which albumin usually binds. This indicates that biocompatible MNP-DMSA is a very promising material system to be used as a drug delivery system (DDS), primarily for lung cancer treatment.
Resumo:
Three dermaseptins, DS 01, DD K, and DD L, were compared with respect to their structural features and interactions with liposomes. Circular dichroic spectra at alcohols of different chain lengths revealed that DS 01 has the higher helicogenic potential in hydrophobic media. Binding of DS 01, DD K, and DD L to liposomes induced significant blue shifts of the emission spectra of the single tryptophan located at position 3 of all sequences indicating association of the peptides with bilayers. Kinetics evaluation of atomic force microscopy images evidenced the strong fusogenic activity of DS 01 whereas DD K and DD L showed increased lytic activities. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.
Resumo:
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH(2), DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 mu g/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis. Copyright (C) 2011 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
In this work the interaction of the antimicrobial peptide indolicidin (IND) and its mutants CP10A and CP11 with a eukaryotic membrane model was examined by molecular dynamics simulations. The aim was to analyse the behaviour of these antimicrobial peptides when they interact with a eukaryotic modelled membrane, thereby obtaining atomic detailed observations that are not experimentally available. In the simulations, the widely studied dipalmitoylphosphatidylcholine hydrated bilayer was used as a eukaryotic membrane model. In agreement with experimental observations, the peptides IND, CP10A, and CP11 insert into the bilayer differently; the peptides that insert more deeply present the major hemolytic activities. The hydrophobic residues are responsible for the insertion, but some Trp residues of the peptides remain at the bilayer/water interface because they interact with the bilayer choline groups by cation-pi interactions that should be important for recognition of eukaryotic membrane by the three studied peptides.
Resumo:
Background: Xylanases (EC 3.2.1.8) hydrolyze xylan, one of the most abundant plant polysaccharides found in nature, and have many potential applications in biotechnology. Methods: Molecular dynamics simulations were used to investigate the effects of temperature between 298 to 338 K and xylobiose binding on residues located in the substrate-binding cleft of the family 11 xylanase from Bacillus circulans (BcX). Results: In the absence of xylobiose the BcX exhibits temperature dependent movement of the thumb region which adopts an open conformation exposing the active site at the optimum catalytic temperature (328 K). In the presence of substrate, the thumb region restricts access to the active site at all temperatures, and this conformation is maintained by substrate/protein hydrogen bonds involving active site residues, including hydrogen bonds between Tyr69 and the 2` hydroxyl group of the substrate. Substrate access to the active site is regulated by temperature dependent motions that are restricted to the thumb region, and the BcX/substrate complex is stabilized by extensive intermolecular hydrogen bonding with residues in the active site. General significance: These results call for a revision of both the ""hinge-bending"" model for the activity of group 11 xylanases, and the role of Tyr69 in the catalytic mechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Adrenocorticotropin (ACM) and alpha-melanocyte stimulating hormone (alpha-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of alpha-MSH are the same initial sequence of ACM and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1-21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in alpha-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1-24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles; and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in alpha-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Suramin is a polysulphonated napthylurea used as an antiprotozoal/anthelminitic drug, which also inhibits a broad range of enzymes. Suramin binding to recombinant human secreted group IIA phospholipase A(2) (hsPLA(2)GIIA) was investigated by molecular dynamics simulations (MD) and isothermal titration calorimetry (ITC). MD indicated two possible bound suramin conformations mediated by hydrophobic and electrostatic interactions with amino-acids in three regions of the protein. namely the active-site and residues located in the N- and C-termini, respectively. All three binding sites are located on the phospholipid membrane recognition surface, suggesting that suramin may inhibit the enzyme, and indeed a 90% reduction in hydrolytic activity was observed in the presence of 100 nM suramin. These results correlated with ITC data, which demonstrated 2.7 suramin binding sites on the hsPLA(2)GIIA, and indicates that suramin represents a novel class of phosphohpase A(2) inhibitor. (C) 2009 Elsevier Inc. All rights reserved.