76 resultados para BLEACHING EFFLUENTS
Resumo:
The use of pesticides has been the main strategy to prevent ectoparasites that threaten aquaculture productivity. The non regulated use of such chemicals may lead to damage in aquatic ecosystems that receive the ponds effluents, compromising environmental and consumers' health. With the aim of evaluate the use of pesticides in aquacultural practices developed in Mogi-Guacu catchment, fish farm and fee fishing owners were interviewed. Eighty-nine enterprises were visited, and was verified that about 40% uses pesticide during management practices in recent years. The diflubenzuron, methyl parathion, trichlorfon and triflumuron were the pesticides most used. In addition to the interviews, samples were taken in 3 enterprises localized in Socorro, SP (Peixe River sub-catchment) which had a pesticide usage history. It was not detected residues of the pesticides diflubenzuron, methyl parathion and dichlorvos in any water, sediments nor fishes samples from tow distinct seasons (lower and high fishing seasons). On fact, non-detected pesticides residues corroborate with the fish farmers statement to deny recently pesticide usage during management practices. Nevertheless, the lack of chemotherapeutics usage criteria and the potential hazardous due to these practices were discussed.
Resumo:
Processed tea and herbal infusions were Studied for their phenol content, antioxidant activity and main flavonoids. Total phenolics were determined by Folin-Ciocalteu method and ranged from N.D. to 46.46 +/- 0.44 mg/g GAE. Flavonoids were investigated by HPLC, and myricetin, quercetin, kaempferol were identified in black, green, and chamomile tea. Antioxidant activity was evaluated using two methods: DPPH and beta-carotene bleaching test (BCB). Using the BCB, the highest activities were found for infusions of black tea, mate, lemongrass, chamomile, and fennel; whereas fresh herbal infusions presented the lowest activities. Using the DPPH method, fresh herbal infusions presented the highest activities. Processed leaves with the lowest IC50 values were green and black tea (147.63 and 288.60 mu g/mL, respectively). The results of this research show that the infusions studied are good Source of compounds presenting antioxidant activity in vitro.
Resumo:
The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.
Resumo:
Objective: The objective of this study was to evaluate the influence of different Er:YAG laser (lambda = 2.94 mu m) energy parameters on the microtensile bond strength (mu TBS) and superficial morphology of bovine enamel bleached with 16% carbamide peroxide. Background: Laser irradiation could improve adhesion to bleached enamel surfaces. Methods: Sixty bovine enamel blocks (7x3x3 mm(3)) were randomly assigned to six groups according to enamel preparation procedures (n = 10): G1-bleaching and Er:YAG laser irradiation with 25.52 J/cm(2) (laser A, LA); G2-bleaching and Er:YAG laser irradiation with 4.42J/cm(2) (laser B, LB); G3-bleaching; G4-Er:YAG laser irradiation with 25.52 J/cm(2); G5-Er:YAG laser irradiation with 4.42J/cm(2); G6-control, no treatment. G1 to G3 were bleached for 6 h during 21 days. Afterwards, enamel surfaces in all groups were slightly abraded with 600-grit SiC papers and G1, G2, G4 and G5 were irradiated according to each protocol. Enamel blocks were then restored with an etch-and-rinse adhesive system and a 4-mm thick composite buildup was made in two increments (n = 9). After 24 h, restored blocks were serially sectioned with a cross-section area of similar to 1 mm(2) at the bonded interface and tested in tension in a universal testing machine (1 mm/min). Failure mode was determined at a magnification of x100 using a stereomicroscope. One treated block of each group was selected for scanning electron microscopy (SEM) analysis. mu TBS data were analyzed by two-way ANOVA and no statistical differences were observed among groups. Results: Mean bond strengths (SD) in MPa were: G1-30.4(6.2); G2-27.9(8.5); G3-32.3(3.9); G4-23.7(5.8); G5-29.3(6.0); G6-29.1(6.1). A large number of adhesive failures was recorded for bleached and irradiated enamel surfaces. Conclusions: Bleached enamel surfaces mu TBS values were not significantly different from those of unbleached enamel. Even though Er:YAG laser irradiation with both parameters had no influence on mu TBS for bleached and unbleached enamel, SEM analysis revealed that Er:YAG laser irradiation with 25.52J/cm(2) should not be recommended, as enamel ablation was observed, whereas irradiation with 4.42J/cm(2) did not promote any remarkable changes on enamel surface.
Resumo:
This study describes the effects of different intensities of UVB radiation on growth and morphology of early development stages of Iridaea cordata in germlings, young gametophytes originated in the laboratory and young fronds collected in the Magellan Strait, Chile. The experiments were carried out during four weeks in controlled conditions of temperature and photoperiod and the results were compared with a control treatment (without UVB). All UVB irradiation treatments caused bleaching and decrease in growth rates of germlings. Additionally, initial upright fronds were not observed in any of the UVB treatments, where as those cultivated in UVB absence developed erect ones in the second week of culture. The young gametophytes exhibited morphological alteration (small number and size of basal ramifications, curling of tips, bleaching and necrosis) and decrease in growth when exposed to UVB radiation. Young fronds collected from the field showed mainly morphological alterations (curling of frond). Morphological alterations in young gametophytes and young fronds of I. cordata could be interpreted as a defense against UVB by reducing the area exposed to radiation. However, high level of UVB radiation can produce irreparable damage, such as necrosis, observed in young gametophytes originated in the laboratory. Finally, the UVB effects on early developmental stages of I. cordata depend on the UVB irradiance and time of exposition.
Resumo:
Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.
Resumo:
The in vivo bioavailability of Se was investigated in enriched Pleurotus ostreatus mushrooms. A bioavailability study was performed using 64 Wistar male rats separated in 8 groups and fed with different diets: without Se, with mushrooms without Se, with enriched mushrooms containing 0.15, 0.30 or 0.45 mg kg(-1) Se and a normal diet containing 0.15 mg kg(-1) of Se using sodium selenate. The experiment was performed in two periods: depletion (14 days) and repletion (21 days), according to the Association of Official Analytical Chemists. After five weeks, the rats were sacrificed under carbon dioxide, and blood was drawn by heart puncture. Blood plasma was separated by centrifugation. The total Se concentration in the plasma of rats fed with enriched mushrooms was higher than in rats fed with a normal diet containing sodium selenate. The plasma protein profiles were obtained using size exclusion chromatography (SEC) and UV detectors. Aliquots of effluents (0.5 mL per minute) were collected throughout in the end of the chomatographic column. However, Se was determined by graphite furnace atomic absorption spectrometry (GF AAS) only in the aliquots where proteins were detected by SEC-UV. The plasma protein pro. le of rats fed with different diets was similar. The highest Se concentration was observed in a peptide presenting 8 kDa. Furthermore, the higher Se concentration in this peptide was obtained for rats fed with a diet using enriched mushrooms (7 mu g L(-1) Se) compared to other diets (2-5 mu g L(-1) Se). These results showed that Se-enriched mushrooms can be considered as an alternative Se food source for humans, due to their high bioavailability.
Resumo:
Biopulping fundamentals, technology and mechanisms are reviewed in this article. Mill evaluation of Eucalyptus grandis wood chips biotreated by Ceriporiopsis subvermispora on a 50-tonne pilot-plant demonstrated that equivalent energy savings can be obtained in lab- and mill-scale biopulping. Some drawbacks concerning limited improvements in pulp strength and contamination of the chip pile with opportunist fungi have been observed. The use of pre-cultured wood chips as inoculum seed for the biotreatment process minimized contamination problems related to the use of blended mycelium and corn-steep liquor in the inoculation step. Alkaline wash restored part of the brightness in biopulps and marketable brightness values were obtained by one-stage bleaching with 5% H2O2 when bio-TMP pulps were under evaluation. Considering the current scenario, the understanding of biopulping mechanisms has gained renewed attention because more resistant and competitive fungal species could be selected with basis on a function-directed screening project. A series of studies aimed to elucidate structural changes in lignin during wood biodegradation by C. subvermispora had indicated that lignin depolymerization occurs during initial stages of wood biotreatment. Aromatic hydroxyls did not increase with the split of aryl-ether linkages, suggesting that the ether-cleavage-products remain as quitione-type structures. On the other hand, cellulose is more resistant to the attack by C subvermispora. MnP-initiated lipid peroxidation reactions have been proposed to explain degradation of non-phenolic lignin substructures by C subvermispora, while the lack of cellobiohydrolases and the occurrence of systems able to suppress Fenton`s reaction in the cultures have explained non-efficient cellulose degradation by this biopulping fungus. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The Pirapo river watershed (Parana State, Brazil) compounds a relatively industrialized and urbanized region, undergoing great pressure from the discharge of industrial, agricultural and domestic wastes. We evaluated the environmental quality of ten streams belonging to this watershed in April and June 2008 by performing acute and chronic toxicity tests with Daphnia similis and Ceriodaphnia silvestrii from water and sediment samples. We tested the hypothesis that the streams located in urban areas are more exposed to the influence of pollutants, than those outside the city limits. In addition, we obtained the measures of physical and chemical parameters, and identified the main polluted sources. Contrary to what was expected, the rural streams were more toxic than those located in urban area. These results demonstrate that the water bodies located in rural areas are being affected by the pollution of aquatic ecosystems as far as those found in urban areas, requiring the same attention of environmental managers in relation to its monitoring.
Resumo:
The purpose of this study was to present a methodology with superior efficiency for inactivating pathogenic indicators commonly found in domestic sewage. The adopted method was based on synergistic effect resulting from the introduction of a UV radiation pre-disinfection stage of sewage followed by secondary treatment. A pilot unit was installed in the sewage treatment plant of the University of Sao Paulo to simulate the combined system in full-scale operational conditions. Its performance was evaluated through microbiological examinations for determining Escherichia coli, total coliforms and coliphages. The application of UV radiation at 5.1mW/cm(2) for 10 s of exposure in the first disinfection stage was enough to reduce the surviving number of E. coli around 100 times, in comparison to the conventional method. Therefore, based on experimental data, it is possible to conclude that combining treatment and pre-disinfection stage is an effective potential technique to produce effluents with lower degree of contamination by pathogenic organisms.
Resumo:
This paper presents the results from 92 cycles of an anaerobic sequencing batch biofilm reactor containing biomass immobilized on inert support (mineral coal) applied for the treatment of an industrial wastewater containing high sulfate concentration. The pilot-scale reactor, with a total volume of 1.2 m(3), was operated at sulfate loading rates ranging from 0.15 to 1.90 kgSO(4)(2-)/cycle (48 It - cycle) corresponding to sulfate concentrations of 0.25 to 3.0 gSO(4)(2-) l(-1). Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. Influent sulfate concentrations were increased in order to evaluate the minimum COD/sulfate ratio at which high reactor performance could be maintained. The mean sulfate removal efficiency remained between the range of 88 to 92% at several sulfate concentrations. Temporal profiles along the 48 h cycles were carried out under stable operation at sulfate concentrations of 1.0, 2.0 and 3.0 gSO(4)(2-) l(-1). Sulfate removal reached 99% for cycle times of 15, 25, and 30 h, and the effluents sulfate concentrations were lower than 8 mgSO(4)(2-) l(-1). The results demonstrate the potential applicability of the anaerobic configuration for the biological treatment of sulfate-rich wastewaters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A polyurethane packed-bed-biofilm sequential batch reactor was fed with synthetic substrate simulating the composition of UASB reactor effluents. Two distinct ammonia nitrogen concentrations (125 and 250 mg l(-1)) were supplied during two sequential long-term experiments of 160 days each (320 total). Cycles of 24 h under intermittent aeration for periods of 1 h were applied, and ethanol was added as a carbon source at the beginning of each anoxic period. Nitrite was the main oxidized nitrogen compound which accumulated only during the aerated phases of the batch cycle. A consistent decrease of nitrite concentration started always immediately after the interruption of oxygen supply and addition of the electron donor. Removal to below detection limits of all nitrogen soluble forms was always observed at the end of the 24 h cycles for both initial concentrations. Polyurethane packed-bed matrices and ethanol amendments conferred high process stability. Microbial investigation by cloning suggested that nitrification was carried out by Nitrosomonas-like species whereas denitrification was mediated by unclassified species commonly observed in denitrifying environments. The packed-bed batch bioreactor favored the simultaneous colonization of distinct microbial groups within the immobilized microbial biomass. The biofilm was capable of actively oxidizing ammonium and denitrification at high ratios in intermittent intervals within 24 h cycles. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Since hog raising concentrates a huge amount of swine manure in small areas, it is considered by the environmental government organizations to be one of the most potentially pollutant activities. Therefore the main objective of this research was to evaluate by operational criteria and removal efficiency, the performance of a Anaerobic Baffled Reactor (ABR), working as a biological pre-treatment of swine culture effluents. The physical-chemical analyses carried out were: total COD, BOD(5), total solids (TS), fix (TFS) and volatiles (TVS), temperature, pH, total Kjeldahl nitrogen, phosphorus, total acidity and alkalinity. The ABR unit worked with an average efficiency of 65.2 and 76.2%, respectively, concerning total COD and BOD(5), with a hydraulic retention time (HRT) about 15 hours. The results for volumetric organic loading rate (VOLR), organic loading rate (OLR) and hydraulic loading rate (HLR) were: 4.46 kg BOD m(-3) day(-1); 1.81 kg BOD(5) kg TVS(-1) day(-1) and 1.57 m(3) m(-3) day(-1), respectively. The average efficiency of the whole treatment system for total COD and BOD(5) removal were 66.5 and 77.8%, showing an adequate performance in removing die organic matter from swine wastewater.
Resumo:
The biological nitritation/denitritation process in the removal of organic matter and nitrogen in a landfill leachate was studied using an activated sludge sequencing batch reactor Treatment cycles were formed by an anoxic and an aerobic phases in which the conditions for oxidation of the influent N load and the prevalence of nitrite concentration at the end of aerobic treatment cycles were determined as well as the use of organic matter present in the leachate as a carbon source for denim-firing organisms in the anoxic stage The removal efficiencies of N-NO(2) at the end of the anoxic process (48h) ranged between 14 and 30% indicating low availability of biodegradable organic matter in the leachate As for the accumulation of N-NO(2) at the end of the aerobic phase (48h) of treatment cycles imbalances were not observed while 100% removal efficiencies of N and specific nth-dation rates from 0 095 to 0 158kgN-NH(3)/kgSSV per day were recorded demonstrating the applicability of simplified nitrification in the treatment of effluents with low C/N ratios