63 resultados para BASIN OF ATTRACTION
Resumo:
A new species of Jupiaba is described from rio Curuá, a tributary of the rio Iriri, rio Xingu basin, Pará State, Brazil. The new species is distinguished from its congeners by the unique combination of teeth cusps of similar size, dentary teeth gradually decreasing in size towards posterior portion, color pattern consisting of dark markings on the base of the majority of lateral body scales, inconspicuous dark elongate humeral blotch and conspicuous dark round blotch on the caudal peduncle, and 21 to 24 branched anal-fin rays. The new species is very similar, and possibly sister taxon to J. meunieri. Comments on the endemism of the fish fauna of the upper rio Curuá are given.
Resumo:
A new species of Rineloricaria Bleeker from the rio Vermelho, Araguaia basin, Goiás, Brazil is described. Rineloricaria osvaldoi, new species, can be distinguished from its congeners by the combination of the following characters: surface of thoracic area trapezoidal with greatest width between pectoral fins, up to 13 premaxillary teeth, largest body width at the section of the canal plate, anterior profile of the head of mature males semicircular in dorsal view. Although eight genera of Loricariinae are known from the rio Araguaia basin, R. lanceolata was only species of Rineloricaria previously reported from that basin. Therefore, the discovery of the R. osvaldoi increases the scenery of diversity of Loricariinae within this drainage basin.
Resumo:
Rineloricaria daraha, new species, is described from the rio Daraá, tributary of rio Negro, northwestern Amazonas State, Brazil. The new species is diagnosed by having seven branched pectoral-fin rays, finger-like papillae on the lower lip, a large multi-angular preanal plate, and at least four quadrangular plates of variable size surrounding the preanal plate. The new species is known only from rio Daraá and its waterfalls.
Resumo:
Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25-2.5 mu m were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25-0.45 mu m in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5-2.5 mu m, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log(10)F = 0.48.U + 2.21 where F is the net emission number flux of 0.5-2.5 mu m particles [m(-2) s(-1)] and U is the horizontal wind speed [ms(-1)] at the top of the tower.
Resumo:
Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bod,l, depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bod,l, emission patterns and volumes and the mineral supply flux to the Amazon. Until now, the particular link between the Bod,l, and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08) in order to explore the validity and the nature of the proposed link between the Bod,l, depression and the Amazon forest. This case study follows the dust events of 11-16 and 18-27 February 2008, from the emission in the Bod,l, over West Africa (most likely with contribution from other dust sources in the region) the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s(-1), usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude.
Resumo:
In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondonia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Angstrom exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70% of the absorption Angstrom exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Angstrom exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Angstrom exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Angstrom exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Angstrom exponents on 24-h aerosol forcings, at least in the spectral range of 450-880 nm. Further studies should be taken to assess the corresponding impact in the UV spectral range. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.
Resumo:
The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies. In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI) fine (D(p) < 2.5 mu m) and coarse (2.5 mu m < Dp < 10 mu m) aerosol particles were sampled from February to June (wet season) and from August to September (dry season) 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 mu g m(-3) during the wet season and 4.2 mu g m(-3) during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 mu g m(-3), respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC); the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m(2) g(-1) at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF) analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA), and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP) dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas. The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation of elemental carbon (EC) by the TM5 model during the dry season and OC both during the dry and wet periods. The overestimation was likely due to the overestimation of biomass burning emission inventories and SOA production over tropical areas.
Resumo:
The unusual bivalve Guiratingia mendesi is redescribed from the original material. Detailed analysis of hinge and muscle scars allows more refined designation of its taxonomic position and affinities to other Permian bivalves from the Parana Basin. Guiratingia mendesi is characterized by very small, anteriorly expanded shells, with a great number of muscle striae within the area delimited by the pallial line. A flattened area is noted alongside the commissure of shell. The presence of a triangular blunt tooth in the right valve allows its designation to Megadesmidae. The absence of accessory muscle scars ""a"" and ""b"" and pedal elevator indicate that the genus belongs to the Plesiocyprinellinae, a group of bivalves considered endemic to the Passa Dois Group. Guiratingia mendesi is found, however, in limestones of the Palermo Formation (Middle Artinskian), nearly 100 in below the base of the Irati Formation (Late Artinskian). Until now, it was believed that within the Permian succession of Parana Basin, pre-Irati bivalves were all gondwanic or cosmopolitan. Guiratingia mendesi was an endemic, active burrower that resembles Runnegariella fragilis from the Permian Teresina Formation. This indicates that during Palermo times restricted paleogeographic conditions have existed within the huge Parana epeiric sea, favoring endemicity, probably in marine bayments close to its margins. The presence of an anteriorly expanded shell in G mendesi is a condition also seen in other Mesozoic and Cenozoic anomalodesmatans, demonstrating the recurrence of shell forms in distinct lineages of this interesting group of bivalves.
Resumo:
The stomatal density and index in compressed leaves of Glossopteris communis from two different roof shales from the Lower Permian in Parana Basin, Brazil (Western Gondwana) have been investigated to test the possible relationship with modeled global changes in atmospheric CO(2) during the Phanerozoic. The obtained parameters show that the genus Glossopteris from the Cool Temperate biome can be used as CO(2) -proxy, despite the impossibility of being compared with living relatives or equivalents. When confronted with already published data for the Tropical Summer Wet biome, the present results confirm the detection of low levels of atmospheric CO(2) during the Early Permian, as predicted by the modeled curve. Nevertheless, the lower stomatal numbers detected at the climax of the coal interval (Faxinal Coalfield, Sakmarian) when compared to the higher ones obtained in leaves from a younger interval (Figueira Coalfield, Artinskian) could be attributed to temporarily high levels of atmospheric CO(2). Therefore, the occurrence of an extensive peat generating event at the southern part of the basin and subsequent greenhouse gases emissions from this environment may have been enough to reverse regionally and temporarily the reduction trend in atmospheric CO(2). Additionally, the Faxinal flora is preserved in a tonstein layer, which is a record of volcanic activity that could also cause a rise in atmospheric CO(2). During the Artinskian, the scarce generation of peat mires, as revealed by the occurrence of thin and discontinuous coal layers, and the lack of volcanism evidence would be insufficient to affect the general low CO(2) trend.
Resumo:
This paper reports manganese (Mn) fractionation in samples collected from the water column and sediments in an environmental protection area in the Alto do Paranapanema Basin (Sao Paulo State, Brazil). The three locations studied showed equivalent Mn levels, with moderate seasonal differences (p < 0.05). The sediment samples contained five Mn species (p < 0.05): iron and manganese (hydr)oxides > Mn bound to carbonates approximate to exchangeable Mn approximate to Mn bound to silicates > Mn bound to organic matter (p < 0.05). The water samples contained three species (p < 0.05): particulate Mn > labile Mn approximate to non-labile Mn. The data suggest that Mn has a natural origin (Enrichment Factor EF < 2; Geoaccumulation Index I(geo) < 0) and moderate environmental risk (Risk Assessment Code RAC similar to 30%). At the same time, under certain conditions some manganese species could be present in a state of equilibrium between the water column and sediment. These results could provide a basis for Mn management in the Alto do Paranapanema Basin.
Resumo:
The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k(0) method (k(0)-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Fig, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k(0)-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The introduction of allochthonous fish species happens constantly in large bodies of freshwater, like as the reservoirs of Parana Basin, located in Brazilian southeast, representing a threat for local biodiversity. The fish species Plagioscion squamosissimus and Cichla ocellaris were introduced from the 1970s in several water bodies of this basin and had successfully established themselves in all six reservoirs located in the middle and lower Tiete River (SP, Brazil), particularly. After six decades from the first recorded species introduction, this hydrographic system remains open to the invasion of further fish species, owing to widespread fish-farming activity and by the channels opened between this system and other reservoirs and river basin. This study was an effort to confirm the Geophagus proximus occurrence in the six Tiete River reservoirs, verifying the actual introduction status and analyzing its potential environmental impacts on local species by the analysis of the population structure (abundance, body dimensions and feeding habits). By the results, this species was confirmed in the Ibitinga, Nova Avanhandava and Tres Irmaos reservoirs. The abundance and feeding analysis shows, respectively, it is successfully established in the Tres Irmaos reservoir with the same feeding habitats of local species, such as Geophagus brasiliensis. It was further shown to be very likely that G. proximus would spread throughout the reservoir system of the middle and lower Tiete River, in the manner of P. squamosissimus and C. ocellaris, and the competition pressure for food resources between G. proximus and the local species which represents a potential environmental impact system. These scientific evidences fortifies the knowledge basin for the implantation of a fish management system, to control and reduce the abundance of the invader and to prevent its becoming established in all the Tiete River Basin, avoiding the disastrous consequences for the native species of Parana River Basin.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.
Resumo:
This article reports major results from collaborative research between France and Brazil on soil and water systems, carried out in the Upper Amazon Basin. It reveals the weathering processes acting in the partly inundated, low elevation plateaus of the Basin, mostly covered by evergreen forest. Our findings are based on geochemical data and mineral spectroscopy that probe the crystal chemistry of Fe and Al in mineral phases (mainly kaolinite, Al- and Fe-(hydr)oxides) of tropical soils (laterites). These techniques reveal crystal alterations in mineral populations of different ages and changes of metal speciation associated with mineral or organic phases. These results provide an integrated model of soil formation and changes (from laterites to podzols) in distinct hydrological compartments of the Amazon landscapes and under altered water regimes. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.