162 resultados para B cell biology
Resumo:
In lymphocytes (LY), the well-documented antiproliferative effects of IFN-alpha are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-alpha, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFN alpha also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFN alpha are associated with a reduction in glucose and glutamine metabolisms.
Resumo:
Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.
Resumo:
Background: Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA) on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results: Maternal immunization with OVA showed increased levels of Fc gamma RIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-gamma-secreting T cells and IL-4 and IL-12-secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced Fc gamma RIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion: Maternal immunization upregulates the inhibitory Fc gamma RIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.
Resumo:
Background: Celery (Apium graveolens) represents a relevant allergen source that can elicit severe reactions in the adult population. To investigate the sensitization prevalence and cross-reactivity of Api g 2 from celery stalks in a Mediterranean population and in a mouse model. Methodology: 786 non-randomized subjects from Italy were screened for IgE reactivity to rApi g 2, rArt v 3 (mugwort pollen LTP) and nPru p 3 (peach LTP) using an allergen microarray. Clinical data of 32 selected patients with reactivity to LTP under investigation were evaluated. Specific IgE titers and cross-inhibitions were performed in ELISA and allergen microarray. Balb/c mice were immunized with purified LTPs; IgG titers were determined in ELISA and mediator release was examined using RBL-2H3 cells. Simulated endolysosomal digestion was performed using microsomes obtained from human DCs. Results: IgE testing showed a sensitization prevalence of 25.6% to Api g 2, 18.6% to Art v 3, and 28.6% to Pru p 3 and frequent co-sensitization and correlating IgE-reactivity was observed. 10/32 patients suffering from LTP-related allergy reported symptoms upon consumption of celery stalks which mainly presented as OAS. Considerable IgE cross-reactivity was observed between Api g 2, Art v 3, and Pru p 3 with varying inhibition degrees of individual patients' sera. Simulating LTP mono-sensitization in a mouse model showed development of more congruent antibody specificities between Api g 2 and Art v 3. Notably, biologically relevant murine IgE cross-reactivity was restricted to the latter and diverse from Pru p 3 epitopes. Endolysosomal processing of LTP showed generation of similar clusters, which presumably represent T-cell peptides. Conclusions: Api g 2 represents a relevant celery stalk allergen in the LTP-sensitized population. The molecule displays common B cell epitopes and endolysosomal peptides that encompass T cell epitopes with pollen and plant-food derived LTP.
Resumo:
Clinical trials using dendritic cells (DCs) to treat cancer patients have generated promising results in recent years. However, even simple aspects of this therapy are still not well understood, including the storage and distribution of manufactured vaccines. These processes are essential and must be elucidated in order to reduce costs. We evaluated the effects of different storage conditions on vaccine functionality using mixed lymphocyte reaction (MLR). Vaccine storage at 4 degrees C for up to 72 h had no significant effect on vaccine activity. Shipping to distant places is possible, if vaccines are kept at 4 degrees C and used up to 3 days after manufacture date.
Resumo:
Skp1, Cul1, Rbx1, and the FBXO25 protein form a functional ubiquitin ligase complex. Here, we investigate the cellular distribution of FBXO25 and its colocalization with some nuclear proteins by using immunochemical and biochemical approaches. FBXO25 was monitored with affinity-purified antibodies raised against the recombinant fragment spanning residues 2-62 of the FBXO25 sequence. FBXO25 protein was expressed in all mouse tissues tested except striated muscle, as indicated by immunoblot analysis. Confocal analysis revealed that the endogenous FBXO25 was partially concentrated in a novel dot-like nuclear domain that is distinct from clastosomes and other well-characterized structures. These nuclear compartments contain a high concentration of ubiquitin conjugates and at least two other components of the ubiquitin-proteasome system: 20S proteasome and Skp1. We propose to name these compartments FBXO25-associated nuclear domains. Interestingly, inhibition of transcription by actinomycin D or heat-shock treatment drastically affected the nuclear organization of FBXO25-containing structures, indicating that they are dynamic compartments influenced by the transcriptional activity of the cell. Also, we present evidences that an FBXO25-dependent ubiquitin ligase activity prevents aggregation of recombinant polyglutamine-containing huntingtin protein in the nucleus of human embryonic kidney 293 cells, suggesting that this protein can be a target for the nuclear FBXO25 mediated ubiquitination.
Resumo:
Left ventricular hypertrophy (LVH) is a complication that may result from chronic hypertension. While nitric oxide (NO) deficiency has been associated with LVH, inconsistent results have been reported with regards to the association of endothelial NO synthase (eNOS) polymorphisms and LVH in hypertensive patients. This study aims to assess whether eNOS haplotypes are associated with LVH in hypertensive patients. This study included 101 healthy controls and 173 hypertensive patients submitted to echocardiography examination. Genotypes for three eNOS polymorphisms were determined: a single-nucleotide polymorphism in the promoter region (T-786C) and in exon 7 (Glu298Asp), and variable number of tandem repeats in intron 4. We found no significant association between eNOS genotypes and hypertension or with LVH (all p>0.05). However, while we found two eNOS haplotypes associated with variable risk of hypertension (all p<0.05), we found no significant associations between eNOS haplotypes and LVH (all p>0.05), even after adjustment in multiple linear regression analysis. These findings suggest that eNOS haplotypes that have been associated with variable susceptibility to hypertension were not associated with LVH in hypertensive patients. Further studies are necessary to examine whether other genes downstream may interact with eNOS polymorphisms and predispose to LVH in hypertensive patients.
Resumo:
There is strong evidence implicating nitric oxide (NO) in the pathophysiology of migraine and aura. Therefore, genetic polymorphisms in the endothelial NO synthase (eNOS) gene have been studied as candidate markers for migraine susceptibility. We compared for the first time the distribution of eNOS haplotypes including the three clinically relevant eNOS polymorphisms (T(-786)C in the promoter, rs2070744; Glu298Asp in exon 7, rs1799983; and a 27 bp variable number of tandem repeats in intron 4) and two additional tagging single-nucleotide polymorphisms (rs3918226 and rs743506) in 178 women with migraine (134 without aura and 44 with aura) and 117 healthy controls (control group). Genotypes were determined by TaqMan allele discrimination assay, real-time polymerase chain reaction, and polymerase chain reaction followed by fragment separation by electrophoresis. The GA (rs743506) genotype was more common in the control group than in women with migraine (odds ratio = 0.47, 95% confidence interval [CI] 0.29-0.78, p<0.01). No significant differences were found in allele distributions for the five eNOS polymorphisms. However, the haplotypes including the variants ""C C a Glu G"" and the variants ""C C b Glu G"" were more common in women with migraine with aura than in women with migraine without aura (odds ratio = 30.71, 95% CI = 1.61-586.4 and odds ratio = 17.26, 95% CI = 1.94-153.4, respectively; both p<0.0015625). These findings suggest that these two eNOS haplotypes affect the susceptibility to the presence of aura in patients with migraine.
Resumo:
A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.
Resumo:
Placentation starts with the formation of a spheroidal trophoblastic shell surrounding the embryo, thus facilitating both implantation into the uterine stroma and contact with maternal blood. Although it is known that diabetes increases the placental size and weight, the mechanisms responsible for this alteration are still poorly understood. In mammals, cellular proliferation occurs in parallel to placental development and it is possible that diabetes induces abnormal uncontrolled cell proliferation in the placenta similar to that seen in other organs (e.g. retina). To test this hypothesis, the objective of this work was to determine cell proliferation in different regions of the placenta during its development in a diabetic rat model. Accordingly, diabetes was induced on day 2 of pregnancy in Wistar rats by a single injection of alloxan (40 mg/kg i.v.). Placentas were collected on days 14, 17, and 20 postcoitum. Immunoperoxidase was used to identify Ki67 nuclear antigen in placental sections. The number of proliferating cells was determined in the total placental area as well as in the labyrinth, spongiotrophoblast and giant trophoblast cell regions. During the course of pregnancy, the number of Ki67 positive cells decreased in both control and diabetic rat placentas. However, starting from day 17 of pregnancy, the number of Ki67 positive cells in the labyrinth and spongiotrophoblast regions was higher in diabetic rat placentas as compared to control. The present results demonstrate that placentas from the diabetic rat model have a significantly higher number of proliferating cells in specific regions of the placenta and at defined developmental stages. It is possible that this increased cell proliferation promotes thickness of the placental barrier consequently affecting the normal maternal-fetal exchanges.
Resumo:
The 60kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10. RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+)IL-17(+), CD4(+)IFN-gamma(+) and CD4(+)Foxp3(+) cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+)IFN-gamma(+) and CD4(+)IL-17(+) T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.
Resumo:
Background: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz) within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN), quinidine (QND) and quinacrine (QCR) in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches. Methodology/Principal Findings: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day) from the 11(th) to 17(th) day after infection caused significant decreases in worm burden (39%-61%) and egg production (42%-98%). Hz formation was significantly inhibited (40%-65%) in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms. Conclusions: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a valid chemotherapeutic target to treat schistosomiasis.
Resumo:
Background: The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results: We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion: We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction.
Resumo:
Passiflora alata in vitro organogenesis was studied based on explant type, culture medium composition, and incubation conditions. The results indicated that the morphogenic process occurred more efficiently when hypocotyl segment-derived explants were cultured in media supplemented with cytokinin and AgNO(3) incubated under a 16-h photoperiod. The shoot bud elongation and plant development were obtained by transferring the material to MSM culture medium supplemented with GA(3) and incubated in flasks with vented lids. Histological analyses of the process revealed that the difficulties in obtaining plants could be related to the development of protuberances and leaf primordia structures, which did not contain shoot apical meristem. Roots developed easily by transferring elongated shoots to 1/2 MSM culture medium. Plant acclimatization occurred successfully, and somaclonal variation was not visually detected. The efficiency of this organogenesis protocol will be evaluated for genetic transformation of this species to obtain transgenic plants expressing genes that can influence the resistance to Cowpea aphid borne mosaic virus.
Resumo:
Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd