34 resultados para Aza-Analogues
Resumo:
Boron compounds are widely used in synthetic chemistry. The synthesis of the compounds is relatively easy, presenting thermodynamic stability and synthetic versatility. Almost all of them show electrophilic reactivity. Recently, some boryllithium species have been reported as a base or a nucleophile in reaction with organic electrophiles in S(N)2 reactions. In the present work, the proton affinity (PA) of boryllithium compounds was calculated. These values can be useful as theoretical reference values and to provide valuable complementary information for the interpretation and discussion of the basicity of these compounds. The proton affinity was calculated using a theoretical method based on density functional theory and high-level theoretical methods through MP2 and G2MP2 levels of theory. In addition, some global and local reactivity indexes based on density functional theory (DFT) on boryllithium compounds were studied. In order to compare and discuss the chemical reactivity of these compounds, some analogues and electrophilic boron compounds were also studied. Our results showed a local and global nucleophilic reactivity of the boryllithium molecules in agreement with the experimental. reactivity. The boryllithium compounds revealed to be strong bases in comparison to other analogue compounds studied in this work.
Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases
Resumo:
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin: suramin complex, refined at 2.4 angstrom resolution. While a single thrombin: suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein-ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
A novel inhibitor of Schistosoma PNP was identified using an ""in silico"" approach allied to enzyme inhibition assays. The compound has a monocyclic structure which has not been previously described for PNP inhibitors The crystallographic structure of the complex was determined and used to elucidate the binding mode within the active site Furthermore, the predicted pose was very similar to that determined crystallographically, validating the methodology The compound Sm_VS1, despite its low molecular weight, possesses an IC(50) of 1 3 mu M, surprisingly low when compared with purine analogues This is presumably due to the formation of eight hydrogen bonds with key residues in the active site E203, N245 and T244. The results of this study highlight the importance of the use of multiple conformations for the target during virtual screening. Indeed the Sm_VS1 compound was only identified after flipping the N245 side chain It is expected that the structure will be of use in the development of new highly active non-purine based compounds against the Sclustosoma enzyme. (c) 2010 Elsevier B V. All rights reserved
Resumo:
The anchoring of K[Ru-III(edta)(Cl)] on poly(amidoamine) dendrimers (PAMAM of three generations G(x)/Ru (x = 0, 2 and 3)) through a peptide type bond yielded the aquo species, [Ru-III(edta)(H2O)] on dendrimer surface, and upon NO exposure, yielded their nitrosyl analogues, Gx/RuNO. Characterization of these compounds by elemental analysis, and a UV-vis, IR and C-13 NMR spectroscopies indicated the immobilization of 4,12 and 29 molecules of [Ru-III(edta)(H2O)](-) or of the nitrosyl complex [Ru(II)edta)NO] on the dendrimer surface for G(X) = 0, 2 and 3, respectively. For each complex the electrochemical spectrum presented only one redox process with redox potential values of -0.20 and -0.32 V(vs SCE) attributed to the Ru/Run and NO+/NO0 couples in G(x)/Ru and G./RuNO, respectively. The one-electron reduction of Gx/RuNO` generates Gx/RuNOo, which undergoes aquation with a k(-NO) of 2.1 +/- 0.7 x 10(-3) s(-1) (pH 1.0, mu = 0.2 mol/L, CF3COOH/NaCF3COO, 25 degrees C). The Gx/RuNO species induced a relaxing effect in aortic rings denuded of endothelium and exhibited in vitro assay trypanocidal activity. (c) 2008 Elsevier Inc. All rights reserved.