68 resultados para Artificial Selection
Resumo:
In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO(2) by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo synthesis is available based on a ""modular approach"" in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a ""dyesensitized photoelectrosynthesis cell"" (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Anthropometric characteristics and motor skills in talent selection and development in indoor soccer
Resumo:
Kick performance, anthropometric characteristics, slalom, and linear running were assessed in 49 (24 elite, 25 nonelite) postpubertal indoor soccer players in order to (a) verify whether anthropometric characteristics and physical and technical capacities can distinguish players of different competitive levels, (b) compare the kicking kinematics of these groups, with and without a defined target, and (c) compare results on the assessments and coaches` subjective rankings of the players. Thigh circumference and specific technical capacities differentiated the players by level of play; cluster analysis correctly classified 77.5% of the players. The correlation between players` standardized measures and the coaches` rankings was 0.29. Anthropometric characteristics and physical capacities do not necessarily differentiate players at post-pubertal stages and should not be overvalued during early development. Considering the coaches` rankings, performance measures outside the specific game conditions may not be useful in identification of talented players.
Resumo:
Natural rubber (NR) is a raw material largely used by the modern industry; however, it is common that chemical modifications must be made to NR in order to improve properties such as hydrophobicity or mechanical resistance. This work deals with the correlation of properties of NR modified with dimethylaminoethylmethacrylate or methylmethacrylate as grafting agents. Dynamic-mechanical behavior and stress/strain relations are very important properties because they furnish essential characteristics of the material such as glass transition temperature and rupture point. These properties are concerned with different physical principles; for this reason, normally they are not related to each other. This work showed that they can be correlated by artificial neural networks (ANN). So, from one type of assay, the properties that as a rule only could be obtained from the other can be extracted by ANN correlation. POLYM. ENG. SCI., 49:499-505, 2009. (c) 2009 Society of Plastics Engineers
Resumo:
Nb(3)Sn is one of the most used superconducting materials for applications in high magnetic fields. The improvement of the critical current densities (J(c)) is important, and must be analyzed together with the optimization of the flux pinning acting in the material. For Nb(3)Sn, it is known that the grain boundaries are the most effective pinning centers. However, the introduction of artificial pinning centers (APCs) with different superconducting properties has been proved to be beneficial for J(c). As these APCs are normally in the nanometric-scale, the conventional heat treatment profiles used for Nb(3)Sn wires cannot be directly applied, leading to excessive grain growth and/or increase of the APCs cross sections. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers in nanometric-scale were analyzed in an attempt to improve J(c) . It is described a methodology to optimize the heat treatment profiles in respect to diffusion, reaction and formation of the superconducting phases. Microstructural, transport and magnetic characterization were performed in an attempt to find the pinning mechanisms acting in the samples. It was concluded that the maximum current densities were found when normal phases (due to the introduction of the APCs) are acting as main pinning centers in the global behavior of the Nb(3)Sn superconducting wire.
Resumo:
To evaluate the potential for fermentation of raspberry pulp, sixteen yeast strains (S. cerevisiae and S. bayanus) were studied. Volatile compounds were determined by GC-MS, GC-FID, and GC-PFPD. Ethanol. glycerol and organic acids were determined by HPLC. HPLC-DAD was used to analyse phenolic acids. Sensory analysis was performed by trained panellists. After a screening step, CAT-1, UFLA FW 15 and S. bayanus CBS 1505 were previously selected based on their fermentative characteristics and profile of the metabolites identified. The beverage produced with CAT-1 showed the highest volatile fatty acid concentration (1542.6 mu g/L), whereas the beverage produced with UFLA FIN 15 showed the highest concentration of acetates (2211.1 mu g/L) and total volatile compounds (5835 mu g/L). For volatile sulphur compounds. 566.5 mu g/L were found in the beverage produced with S. bayanus CBS 1505. The lowest concentration of volatile sulphur compounds (151.9 mu g/L) was found for the beverage produced with UFLA FW 15. In the sensory analysis, the beverage produced with UFLA FW 15 was characterised by the descriptors raspberry, cherry, sweet, strawberry, floral and violet. In conclusion, strain UFLA FW 15 was the yeast that produced a raspberry wine with a good chemical and sensory quality. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Since the discovery of Nb(3)Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb(3)Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb(3)Sn wires reported up to now.
Resumo:
Although titanium and Ti-6Al-4V alloy have been widely used as dental materials, possible undesirable effects such as cytotoxic reactions and neurological disorder due to metal release led to the development of more corrosion resistant and V and Al free titanium alloys, containing Nb, Zr, Mo and Ta atoxic elements. Fluoride containing products used in the prevention of plaque formation and dental caries can affect the stability of the passive oxide films formed on the Ti alloys. In this work, the corrosion behaviour of the new Ti-23Ta alloy has been evaluated in artificial saliva of different pH and fluoride concentration using electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy study showed that the oxide film formed on the alloy in artificial saliva consists of an inner compact film and an outer porous layer. The corrosion resistance of Ti-23Ta alloy which is reduced by increasing F concentration or decreasing pH is related to the resistance of the inner compact layer. The presence of fluoride and low pH of the saliva enhance the porosity of the oxide film and its dissolution.
Resumo:
Zirconium oxide inclusion in Bi2212 superconducting tapes and bulks was studied as possible artificial pinning centers (APC). In order to analyze the zirconium oxide APC addition in Bi2212 samples, magnetization measurements were performed in bulks and transport properties measurements were performed on tapes. In magnetization measurements, the critical current densities are proportional to the width of the magnetization loop at each applied magnetic field. Addition of ZrO(2) in Bi2212 superconductors broadened the magnetization loop and enhanced the critical current densities at 4.2 K in bulks, as a clear indication that ZrO(2) addition improved the pinning and acted as APCs. In contrast, the transport critical current densities decreased in tapes.
Resumo:
A combination of an extension of the topological instability ""lambda criterion"" and a thermodynamic criterion were applied to the Al-La system, indicating the best range of compositions for glass formation. Alloy compositions in this range were prepared by melt-spinning and casting in an arc-melting furnace with a wedge-section copper mold. The GFA of these samples was evaluated by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The results indicated that the gamma* parameter of compositions with high GFA is higher, corresponding to a range in which the lambda parameter is greater than 0.1, which are compositions far from Al solid solution. A new alloy was identified with the best GFA reported so far for this system, showing a maximum thickness of 286 mu m in a wedge-section copper mold. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
Artificial neural networks have been used to analyze a number of engineering problems, including settlement caused by different tunneling methods in various types of ground mass. This paper focuses on settlement over shotcrete- supported tunnels on Sao Paulo subway line 2 (West Extension) that were excavated in Tertiary sediments using the sequential excavation method. The adjusted network is a good tool for predicting settlement above new tunnels to be excavated in similar conditions. The influence of network training parameters on the quality of results is also discussed. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the development and implementation of an artificial neural network based algorithm for transmission lines distance protection. This algorithm was developed to be used in any transmission line regardless of its configuration or voltage level. The described ANN-based algorithm does not need any topology adaptation or ANN parameters adjustment when applied to different electrical systems. This feature makes this solution unique since all ANN-based solutions presented until now were developed for particular transmission lines, which means that those solutions cannot be implemented in commercial relays. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.