51 resultados para Animal magnetism
Resumo:
Aripiprazole is a unique antipsychotic that seems to act as a partial agonist at dopamine D2-receptors, contrasting with other drugs in this class, which are silent antagonists. Aripiprazole may also bind to serotonin receptors. Both neurotransmitters may play major roles in aversion-, anxiety-and panic-related behaviours. Thus, the present work tested the hypothesis that this antipsychotic could also have anti-aversive properties. Male Wistar rats received injections of aripiprazole (0.1-10 mg/kg) and were tested in the open field, in the elevated plus and T mazes (EPM and ETM, respectively) and in a contextual fear conditioning paradigm. Aripiprazole (1mg/kg) increased the percentage of entries onto the open arms of the EPM and attenuated escape responses in the ETM. In the latter model, the dose of 0.1 mg/kg also decreased the latency to leave the enclosed arm, suggesting anxiolytic- and panicolytic-like properties. This dose also decreased the time spent in freezing in a contextual fear conditioning. No significant motor effects were observed at these doses. The present data support the hypothesis that aripiprazole could inhibit anxiety-related responses. Acting as a partial agonist at dopamine receptors, this drug could effectively treat schizophrenia and, in contrast with most antipsychotic drugs, alleviate aversive states.
Resumo:
The effects of microinjection of the nitric oxide (NO) precursor L-arginine (L-Arg), the NO synthase (NOS) inhibitors N-methyl-L-arginine (L-NAME) and 7-nitroindazole (7-NI), and the cyclic guanosine 3`,5`-monophosphate (cGMP) analog 8-Br-cGMP into the dorsal raphe nucleus (DRN) were assessed in rats using the elevated plus maze (EPM) and the forced swim test (FST). L-Arg (100 and 200 nmol) produced an anxiolytic-like effect in the EPM. 8-Br-cGMP (25 and 50 nmol) dose-dependently increased locomotor activity. In the FST, antidepressant-like effects were produced by L-Arg (50 and 100 nmol) and 8-Br-cGMP (12.5 and 25 nmol). Dual effects were observed with NOS inhibitors L-NAME and 7-NI in both the EPM and FST. While low doses of L-NAME (25 nmol) or 7-NI (1 nmol) induced a selective increase in EPM open arm exploration and a decrease in immobility time in the FST, high doses (L-NAME 400 nmol, 7-NI 10 nmol) decreased locomotor activity. These results show that interference with NO-mediated neurotransmission in the DRN induced significant and complex motor and emotional effects. Further studies are needed to elucidate the mechanisms involved in these effects. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Cannabidiol (CBD), a Cannabis sativa constituent, may present a pharmacological profile similar to mood stabilizing drugs, in addition to anti-oxidative and neuroprotective properties. The present study aims to directly investigate the effects of CBD in an animal model of mania induced by D-amphetamine (D-AMPH). In the first model (reversal treatment), rats received saline or D-AMPH (2 mg/kg) once daily intraperitoneal (i.p.) for 14 days, and from the 8th to the 14th day, they were treated with saline or CBD (15, 30 or 60 mg/kg) i.p. twice a day. In the second model (prevention treatment), rats were pretreated with saline or CBD (15, 30, or 60 mg/kg) regime i.p. twice a day, and from the 8th to the 14th day, they also received saline or D-AMPH i.p. once daily. In the hippocampus CBD (15 mg/kg) reversed the D-AMPH-induced damage and increased (30 mg/kg) brain-derived neurotrophic factor (BDNF) expression. In the second experiment, CBD (30 or 60 mg/kg) prevented the D-AMPH-induced formation of carbonyl group in the prefrontal cortex. In the hippocampus and striatum the D-AMPH-induced damage was prevented by CBD (15, 30 or 60 mg/kg). At both treatments CBD did not present any effect against D-AMPH-induced hyperactivity. In conclusion, we could not observe effects on locomotion, but CBD protect against D-AMPH-induced oxidative protein damage and increased BDNF levels in the reversal model and these effects vary depending on the brain regions evaluated and doses of CBD administered.
Resumo:
Evidence from animal models of anxiety has led to the hypothesis that serotonin enhances inhibitory avoidance (related to anxiety) in the forebrain, but inhibits one-way escape (panic) in the midbrain periaqueductal gray (PAG). Stressing the difference between these emotions, neuroendocrinological results indicate that the hypothalamic-pituitary-adrenal axis is activated by anticipatory anxiety, but not by panic attack nor by electrical stimulation of the rat PAG. Functional neuroimaging has shown activation of the insula and upper brain stem (including PAG), as well as deactivation of the anterior cingulated cortex (ACC) during experimental panic attacks. Voxel-based morphometric analysis of brain magnetic resonance images has shown a grey matter volume increase in the insula and upper brain stem, and a decrease in the ACC of panic patients at rest, as compared to healthy controls. The insula and the ACC detect interoceptive stimuli, which are overestimated by panic patients. It is suggested that these brain areas and the PAG are involved in the pathophysiology of panic disorder. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Epilepsy is the most common serious neurological disorder and approximately 1% of the population worldwide has epilepsy. Moreover, sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Information concerning fisk factors for SUDEP is conflicting, but potential risk factors include: young age, early onset of epilepsy, duration of epilepsy, uncontrolled seizures, seizure frequency, AED number and winter temperatures. Additionally, the cause of SUDEP is still unknown; however, the most commonly suggested mechanisms are cardiac abnormalities during and between seizures. Similarly, sudden death syndrome (SDS) is a disease characterized by an acute death of well-nourished and seeming healthy Gallus gallus after abrupt and brief flapping of their wings and incidence of SDS these animals has recently increased worldwide. Moreover, the exactly cause of SDS in Gallus gallus is unknown, but is very probable that cardiac abnormalities play a potential role. Due the similarities between SUDEP and SDS and as Gallus gallus behavioral manifestation during SDS phenomenon is close of a tonic-clonic seizure, in this paper we suggest that epilepsy could be a new possible causal factor for SDS. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In a recent ecological study of the ticks on animal trails within an area of Atlantic rainforest in south-eastern Brazil, Amblyomma aureolatum, A. brasiliense, A. incisum, A. ovale and Haemaphysalis juxtakochi were found questing on the vegetation. Most of the ticks recorded by a small, man-made dam on the forest border were A. dubitatum but a few A. brasiliense and A. cajennense, one A. incisum and one H. juxtakochi were also found. The seasonal activity of the ticks indicated that A. incisum and A. brasiliense had one generation/year. On the animal trails, most tick species and stages quested on the vegetation at a height of 30-40 cm above ground level. The questing larvae and adults of A. incisum tended to be found higher, however, with the greatest numbers recorded 40-50 cm (larvae) or 60-70 cm (adults) above ground level. Most of the adult ticks (81.1% -100%), nymphs (78.6%-100%) and larval clusters (100%) found on a forest trail remained questing at the same location over a 24-h period. Carbon-dioxide traps in the rainforest attracted, 50% of the ticks observed questing on the nearby vegetation and, curiously, the CO(2) traps set deep in the forest attracted far fewer ticks than similar traps set by the dam. The ecological relationships between the ticks, their hosts and the rainforest environment are discussed.
Resumo:
Eleven species of Amazon parrots (genus Amazona) are known to occur in Brazil, and nest poaching and illegal traffic pose serious conservation threats to these species. When the illegal owners realize these animals are incompatible with their expectations and lifestyle, or when the police arrests traders and owners, these trafficked animals are often considered unfit for release and sent to local zoos and captive breeders. A retrospective survey of animal and necropsy records from 1986 to 2007 was used to evaluate the impacts of animal traffic on the population composition and mortality patterns of Amazon parrots at the Quinzinho de Barros Municipal Zoological Park, Sorocaba, Brazil. Data were obtained for 374 Amazon parrots of ten Brazilian species, and there was evidence that the studied population could be split into two major groups: a majority belonging to the Amazona aestiva species and a minority belonging to the remaining species. In comparison, the animals of the first group were more frequently admitted from traffic-related origins (98 vs. 75%), had a shorter lifespan (median 301 days vs. 848 days) and a higher mortality within the first year postadmission (54 vs. 37%), were less likely to receive expensive treatments, and were more frequently housed off-exhibit. On an average, parrots were found to have a short postadmission lifespan (median 356 days), with 92.5% of the birds dying within their first five years in captivity. The paper discusses the difficult dilemmas these incoming traffic-related animals pose to zoo management and official anti-traffic policies. Zoo Biol 29:600-614, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.
Resumo:
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.
Resumo:
This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.
Resumo:
A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajai Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the ltajai Basin is located at Plat= -84 degrees, Plong = 97.5 degrees (A95 = 2 degrees) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
P>Reconstruction of the South Atlantic opening has long been a matter of debate and several models have been proposed. One problem in tracing properly the Atlantic history arises from the existence of a long interval without geomagnetic reversals, the Cretaceous Normal Superchron, for which ages are difficult to assign. Palaeomagnetism may help in addressing this issue if high-quality palaeomagnetic poles are available for the two drifting continental blocks, and if precise absolute ages are available. In this work we have investigated the Cabo Magmatic Province, northeastern Brazil, recently dated at 102 +/- 1 Ma (zircon fission tracks, Ar39/Ar40). All volcanic and plutonic rocks showed stable thermal and AF demagnetization patterns, and exhibit primary magnetic signatures. AMS data also support a primary origin for the magnetic fabric and is interpreted to be contemporaneous of the rock formation. The obtained pole is located at 335.9 degrees E/87.9 degrees S (N = 24; A(95) = 2.5; K = 138) and satisfies modern quality criteria, resulting in a reference pole for South America at similar to 100 Ma. This new pole also gives an insight to test and discuss the kinematic models currently proposed for the South Atlantic opening during mid-Cretaceous.
Resumo:
Social behavior depends on the integrity of social brain circuitry. The temporal lobe is an important part of the social brain, and manifests morphological and functional alterations in autism spectrum disorders (ASD). Rats with temporal lobe epilepsy (TLE), induced with pilocarpine, were subjected to a social discrimination test that has been used to investigate potential animal models of ASD, and the results were compared with those for the control group. Rats with TLE exhibited fewer social behaviors than controls. No differences were observed in nonsocial behavior between groups. The results suggest an important role for the temporal lobe in regulating social behaviors. This animal model might be used to explore some questions about ASD pathophysiology. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.