34 resultados para Amines biògenes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polynorbornadiene and polynorbornene were synthesized via ring opening metathesis polymerization (ROMP) with [RuCl(2)(PPh(3))(2)(amine)] as catalyst precursors, amine = piperidine (1) or perhydroazepine (2) in the presence of 5 mu L of ethyl diazoacetate (EDA) ([monomer]/[Ru] = 5000; 40 degrees C with 1; 25 degrees C with 2). The effects of the solvent volume (2-8 mL of CHCl(3)) reaction time (5-120 min) and atmosphere type (argon and air) on the yields were investigated to observe the behavior of the two different precursors. Quantitative yields were obtained for 60 or 120 min regardless of the starting volumes, either in argon or air, with both Ru species. However, low yields were obtained for short times (5-30 min) when the reactions are performed with large volumes (6-8 mL). In argon, the yields were larger with 2, associated to a faster propagation reaction controlled by the Ru active species. In air, the yields were larger with 1, associated to a higher resistance to O(2) of the starting and propagating Ru species. The different activities between 1 and 2 are discussed considering the steric hindrance and electronic characteristics of the amines such as ancillary ligands and their arrangements with PPh(3) and Cl(-) ions in the metal centers. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in vitro antifungal activity of six thioureido substituted amines (P1-P6) was evaluated against Candida species, including Candida albicans, C. glabrata, C. krusei and C. parapsilosis. These tri- and tetra-thioureido amino derivatives with different methylation levels were synthesised through easy synthetic routes to evaluate their antifungal properties against Candida species. Among all studied derivatives, the tri-(2-thioureido-ethyl)-amine (P1) was the most active compound inhibiting C. albicans and C. glabrata at a concentration of 0.49 mu g ml(-1); P3, the N,N `,N ``,N ```-hexamethyl-derivative, also showed inhibitory activity against C. albicans and C. glabrata, but in higher concentrations (250 mu g ml(-1)). The N,N `,N ``,N ```-tetramethylated amine (P5) only inhibited the growth of C. glabrata, but its corresponding N,N `,N ``,N ```-octamethyl derivative (P6) was also active against C. glabrata (125 mu g ml(-1)) and it was the only compound active against C. parapsilosis. P2 and P4 showed no significant antifungal activity. The structure-activity relationship of the thioureido-substituted derivatives indicates that the molecular branching and the alkylation levels can influence the antifungal activity. This study demonstrated that thioureido derivatives exhibited significant antifungal activity against Candida species and that they can be considered as a very promising bioactive lead compound to develop novel antifungal agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid, selective and specific capillary zone electrophoresis method to determine polyamines in organic extracts from roots of Canavalia ensiformis (Jack Beans) was developed using ultra violet (UV) detection. Canavalia ensiformis is relatively free from diseases and it is used as reference in allelopathy studies. Polyamines are widely distributed in plant and it could be involved in plant pathogen interactions. Optimal separation was achieved using 15 mmol.L-1formic acid (pH 3.0) + 4 mmol.L-1 imidazole as a background electrolyte. It was possible to identify and quantify the polyamines on herbal samples in the presence of other phytochemical substances and analyze them quickly (up to 6 min). The applicability of this method was evaluated in crude organic extracts from roots of Canavalia ensiformis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous work [M. Mandaji, et al., this issue] a sample stacking method was theoretically modeled and experimentally demonstrated for analytes with low dpK(a)/dT (analytes carrying carboxylic groups) and BGEs with high dpH/dT (high pH-temperature-coefficients). In that work, buffer pH was modulated with temperature, inducing electrophoretic mobility changes in the analytes. In the present work, the opposite conditions are studied and tested, i.e. analytes with high dpK(a)/dT and BGEs that exhibit low dpH/dT. It is well known that organic bases such as amines, imidazoles, and benzimidazoles exhibit high dpK(a)/dT. Temperature variations induce instantaneous changes on the basicity of these and other basic groups. Therefore, the electrophoretic velocity of some analytes changes abruptly when temperature variations are applied along the capillary. This is true only if BGE pH remains constant or if it changes in the opposite direction of pK(a) of the analyte. The presence of hot and cold sections along the capillary also affects local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band stacking efficacy was also taken into account in the theoretical model presented. Finally, this stacking method is demonstrated for lysine partially derivatized with naphthalene-2,3-dicarboxaldehyde. In this case, the amino group of the lateral chain was left underivatized and only the alpha amino group was derivatized. Therefore, the basicity of the lateral amino group, and consequently the electrophoretic mobility, was modulated with temperature while the pH of the buffer used remained unchanged.