57 resultados para American Library Association


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Sympathetic hyperactivity is one of the mechanisms involved in the increased cardiovascular risk associated with depression, and there is evidence that antidepressants decrease sympathetic activity. Objectives We tested the following two hypotheses: patients with major depressive disorder with high scores of depressive symptoms (HMDD) have augmented muscle sympathetic nervous system activity (MSNA) at rest and during mental stress compared with patients with major depressive disorder with low scores of depressive symptoms (LMDD) and controls; sertraline decreases MSNA in depressed patients. Methods Ten HMDD, nine LMDD and 11 body weight-matched controls were studied. MSNA was directly measured from the peroneal nerve using microneurography for 3 min at rest and 4 min during the Stroop color word test. For the LMDD and HMDD groups, the tests were repeated after treatment with sertraline (103.3 +/- 40 mg). Results Resting MSNA was significantly higher in the HMDD [29.1 bursts/min (SE 2.9)] compared with LMDD [19.9 (1.6)] and controls [22.2 (2.0)] groups (P=0.026 and 0.046, respectively). There was a significant positive correlation between resting MSNA and severity of depression. MSNA increased significantly and similarly during stress in all the studied groups. Sertraline significantly decreased resting MSNA in the LMDD group and MSNA during mental stress in LMDD and HMDD groups. Sertraline significantly decreased resting heart rate and heart rate response to mental stress in the HMDD group. Conclusion Moderate-to-severe depression is associated with increased MSNA. Sertraline treatment reduces MSNA at rest and during mental challenge in depressed patients, which may have prognostic implications in this group. J Hypertens 27:2429-2436 (c) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Posterior reconstruction (PR) of the rhabdosphincter has been previously described during retropubic radical prostatectomy, and shorter times to return of urinary continence were reported using this technical modification. This technique has also been applied during robot-assisted radical prostatectomy (RARP); however, contradictory results have been reported. Objective: We describe here a modified technique for PR of the rhabdosphincter during RARP and report its impact on early recovery of urinary continence and on cystographic leakage rates. Design, setting, and participants: We analyzed 803 consecutive patients who underwent RARP by a single surgeon over a 12-mo period: 330 without performing PR and 473 with PR. Surgical procedure: The reconstruction was performed using two 6-in 3-0 Poliglecaprone sutures tied together. The free edge of the remaining Denonvillier`s fascia was identified after prostatectomy and approximated to the posterior aspect of the rhabdosphincter and the posterior median raphe using one arm of the continuous suture. The second layer of the reconstruction was then performed with the other arm of the suture, approximating the posterior lip of the bladder neck and vesicoprostatic muscle to the posterior urethral edge. Measurements: Continence rates were assessed with a self-administrated, validated questionnaire (Expanded Prostate Cancer Index Composite) at 1, 4, 12, and 24 wk after catheter removal. Continence was defined as the use of ""no absorbent pads."" Cystogram was performed in all patients on postoperative day 4 or 5 before catheter removal. Results and limitations: There was no significant difference between the groups with respect to patient age, body mass index, prostate-specific antigen levels, prostate weight, American Urological Association symptom score, estimated blood loss, operative time, number of nerve-sparing procedures, and days with catheter. In the PR group, the continence rates at 1, 4, 12, and 24 wk postoperatively were 22.7%, 42.7%, 91.8%, and 96.3%, respectively; in the non-PR group, the continence rates were 28.7%, 51.6%, 91.1%, and 97%, respectively. The modified PR technique resulted in significantly higher continence rates at 1 and 4 wk after catheter removal (p = 0.048 and 0.016, respectively), although the continence rates at 12 and 24 wk were not significantly affected (p = 0.908 and p = 0.741, respectively). The median interval to recovery of continence was also statistically significantly shorter in the PR group (median: 4 wk; 95% confidence interval [CI]: 3.39-4.61) when compared to the non-PR group (median: 6 wk; 95% CI: 5.18-6.82; log-rank test, p = 0.037). Finally, the incidence of cystographic leaks was lower in the PR group (0.4% vs 2.1%; p = 0.036). Although the patients` baseline characteristics were similar between the groups, the patients were not preoperatively randomized and unknown confounding factors may have influenced the results. Conclusions: Our modified PR combines the benefits of early recovery of continence reported with the original PR technique with a reinforced watertight closure of the posterior anastomotic wall. Shorter interval to recovery of continence and lower incidence of cystographic leaks were demonstrated with our PR technique when compared to RARP with no reconstruction. (C) 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Study Objectives: Sleep apnea is common in patients with congestive heart failure, and may contribute to the progression of underlying heart diseae. Cardiovascular and metabolic complications of sleep apnea have been attributed to intermittent hypoxia. Elevated free fatty acids (FFA) are also associated with the progression of metabolic, vascular, and cardiac dysfunction. The objective of this study was to determine the effect of intermittent hypoxia on FFA levels during sleep in patients with heart failure. Design and interventions: During sleep, frequent blood samples were examined for FFA in patients with stable heart (ejection fraction < 40%). In patients with severe sleep apnea (apnea-hypopnea index = 15.4 +/- 3.7 events/h; average low SpO(2) = 93.6%). In patients with severe sleep apnea, supplemental oxygen at 2-4 liters/min was administered on a subsequent night to eliminate hypoxemia. Measurements and Results: Prior to sleep onset, controls and patients with severe apnea exhibited a similar FFA level. After sleep onset, patients with severe sleep apnea exhibited a marked and rapid increase in FFA relative to control subjects. This increase persisted throughout NREM and REM sleep exceeding serum FFA levels in control subjects by 0.134 mmol/L (P = 0.0038) Supplemental oxygen normalized the FFA profile without affecting sleep architecture or respiratory arousal frequency. Conclusion: In patients with heart failure, severe sleep apnea causes surges in nocturnal FFA that may contribute to the accelerated progression of underlying heart disease. Supplemental oxygen prevents that FFA elevation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives The subgenual prefrontal cortex (SGPFC) is an important brain region involved in emotional regulation and reward mechanisms Volumetric abnormalities in this region have been identified in adults with bipolar disorder but thus far not in pediatric cases We examined the volume of this brain region in subjects with pediatric bipolar disorder (PBD) and compared them to healthy controls Methods Fifty one children and adolescents (mean age +/- SD 13 2 +/- 2 9 y) with DSM-IV PBD and 41 (mean age +/- SD 13 7 +/- 2 7 y) healthy comparison subjects (HC) underwent 1 5 T structural magnetic resonance imaging (MRI) brain scans We traced the SGPFC manually and compared SGPFC gray matter volumes using analysis of covariance with age gender and intracranial volume as covariates We also examined the relationship of family history of affective disorders and medication status to SGPFC volumes Results SGPFC volumes were not significantly different in PBD and HC subjects However exploratory analysis showed PBD subjects who had one or more first degree relatives with mood disorders (n = 33) had significantly smaller left hemisphere SGPFC compared to HC (p = 003 Sidak corrected) Current usage of a mood stabilizer was significantly associated with larger right SGPFC volume in PBD (F = 4 82 df = 1/41 p = 0 03) Conclusion Subjects with PBD and a close family history of mood disorders may have smaller left SGPFC volumes than HC Mood stabilizing medication may also impact SGPFC size and could have masked more subtle abnormalities overall (C) 2010 Elsevier Ltd All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia (IH) during sleep. There is growing evidence from animal models of OSA that IH is independently associated with metabolic dysfunction, including dyslipidemia and insulin resistance. The precise mechanisms by which IH induces metabolic disturbances are not fully understood. Over the last decade, several groups of investigators developed a rodent model of IH, which emulates the oxyhemoglobin profile in human USA. In the mouse model, IH induces dyslipidemia, insulin resistance and pancreatic endocrine dysfunction, similar to those observed in human USA. Recent reports provided new insights in possible mechanisms by which IH affects lipid and glucose metabolism. IH may induce dyslipidemia by up-regulating lipid biosynthesis in the liver, increasing adipose tissue lipolysis with subsequent free fatty acid flux to the liver, and inhibiting lipoprotein clearance. IH may affect glucose metabolism by inducing sympathetic activation, increasing systemic inflammation, increasing counter-regulatory hormones and fatty acids, and causing direct pancreatic beta-cell injury. IH models of USA have improved our understanding of the metabolic impact of USA, but further studies are needed before we can translate recent basic research findings to clinical practice. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES We sought to assess the prognostic value and risk classification improvement using contemporary single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) to predict all-cause mortality. BACKGROUND Myocardial perfusion is a strong estimator of prognosis. Evidence published to date has not established the added prognostic value of SPECT-MPI nor defined an approach to detect improve classification of risk in women from a developing nation. METHODS A total of 2,225 women referred for SPECT-MPI were followed by a mean period of 3.7 +/- 1.4 years. SPECT-MPI results were classified as abnormal on the presence of any perfusion defect. Abnormal scans were further classified as with mild/moderate reversible, severe reversible, partial reversible, or fixed perfusion defects. Risk estimates for incident mortality were categorized as <1%/year, 1% to 2%/year, and >2%/year using Cox proportional hazard models. Risk-adjusted models incorporated clinical risk factors, left ventricular ejection fraction (LVEF), and perfusion variables. RESULTS All-cause death occurred in 139 patients. SPECT-MPI significantly risk stratified the population; patients with abnormal scans had significantly higher death rates compared with patients with normal scans, 13.1% versus 4.0%, respectively (p < 0.001). Cox analysis demonstrated that after adjusting for clinical risk factors and LVEF, SPECT-MPI improved the model discrimination (integrated discrimination index = 0.009; p = 0.02), added significant incremental prognostic information (global chi-square increased from 87.7 to 127.1; p < 0.0001), and improved risk prediction (net reclassification improvement = 0.12; p = 0.005). CONCLUSIONS SPECT-MPI added significant incremental prognostic information to clinical and left ventricular functional variables while enhancing the ability to classify this Brazilian female population into low-and high-risk categories of all-cause mortality. (J Am Coll Cardiol Img 2011;4:880-8) (C) 2011 by the American College of Cardiology Foundation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obstructive sleep apnea (OSA) is independently associated with death from cardiovascular diseases, including myocardial infarction and stroke. Myocardial infarction and stroke are complications of atherosclerosis; therefore, over the last decade investigators have tried to unravel relationships between OSA and atherosclerosis. OSA may accelerate atherosclerosis by exacerbating key atherogenic risk factors. For instance, OSA is a recognized secondary cause of hypertension and may contribute to insulin resistance, diabetes, and dyslipidemia. In addition, clinical data and experimental evidence in animal models suggest that OSA can have direct proatherogenic effects inducing systemic inflammation, oxidative stress, vascular smooth cell activation, increased adhesion molecule expression, monocyte/lymphocyte activation, increased lipid loading in macrophages, lipid peroxidation, and endothelial dysfunction. Several cross-sectional studies have shown consistently that OSA is independently associated with surrogate markers of premature atherosclerosis, most of them in the carotid bed. Moreover, OSA treatment with continuous positive airway pressure may attenuate carotid atherosclerosis, as has been shown in a randomized clinical trial. This review provides an update on the role of OSA in atherogenesis and highlights future perspectives in this important research area. CHEST 2011; 140(2):534-542

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Positive surgical margin (PSM) after radical prostatectomy (RP) has been shown to be an independent predictive factor for cancer recurrence. Several investigations have correlated clinical and histopathologic findings with surgical margin status after open RP. However, few studies have addressed the predictive factors for PSM after robot-assisted laparoscopic RP (RARP). Objective: We sought to identify predictive factors for PSMs and their locations after RARP. Design, setting, and participants: We prospectively analyzed 876 consecutive patients who underwent RARP from January 2008 to May 2009. Intervention: All patients underwent RARP performed by a single surgeon with previous experience of > 1500 cases. Measurements: Stepwise logistic regression was used to identify potential predictive factors for PSM. Three logistic regression models were built: (1) one using preoperative variables only, (2) another using all variables (preoperative, intraoperative, and postoperative) combined, and (3) one created to identify potential predictive factors for PSM location. Preoperative variables entered into the models included age, body mass index (BMI), prostate-specific antigen, clinical stage, number of positive cores, percentage of positive cores, and American Urological Association symptom score. Intra-and postoperative variables analyzed were type of nerve sparing, presence of median lobe, percentage of tumor in the surgical specimen, gland size, histopathologic findings, pathologic stage, and pathologic Gleason grade. Results and limitations: In the multivariable analysis including preoperative variables, clinical stage was the only independent predictive factor for PSM, with a higher PSM rate for T3 versus T1c (odds ratio [OR]: 10.7; 95% confidence interval [CI], 2.6-43.8) and for T2 versus T1c (OR: 2.9; 95% CI, 1.9-4.6). Considering pre-, intra-, and postoperative variables combined, percentage of tumor, pathologic stage, and pathologic Gleason score were associated with increased risk of PSM in the univariable analysis (p < 0.001 for all variables). However, in the multivariable analysis, pathologic stage (pT2 vs pT1; OR: 2.9; 95% CI, 1.9-4.6) and percentage of tumor in the surgical specimen (OR: 8.7; 95% CI, 2.2-34.5; p = 0.0022) were the only independent predictive factors for PSM. Finally, BMI was shown to be an independent predictive factor(OR: 1.1; 95% CI, 1.0-1.3; p = 0.0119) for apical PSMs, with increasing BMI predicting higher incidence of apex location. Because most of our patients were referred from other centers, the biopsy technique and the number of cores were not standardized in our series. Conclusions: Clinical stage was the only preoperative variable independently associated with PSM after RARP. Pathologic stage and percentage of tumor in the surgical specimen were identified as independent predictive factors for PSMs when analyzing pre-, intra-, and postoperative variables combined. BMI was shown to be an independent predictive factor for apical PSMs. (C) 2010 European Association of Urology. Published by Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose of review The aim of this review is to summarize current evidence about the impact of obstructive sleep apnea (OSA) and intermittent hypoxia on dyslipidemia and provide future perspectives in this area. Recent findings Intermittent hypoxia, a hallmark of OSA, induces hyperlipidemia in lean mice. Hyperlipidemia of intermittent hypoxia occurs, at least in part, due to activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1) and an important downstream enzyme of triglyceride and phospholipid biosynthesis, stearoyl-CoA desaturase-1. Furthermore, intermittent hypoxia may regulate SREBP-1 and stearoyl-CoA desaturase-1 via the transcription factor hypoxia-inducible factor 1. In contrast, key genes involved in cholesterol biosynthesis, SREBP-2 and 3-hydroxy-3-methylglutaryl- CoA (HMG-CoA) reductase, are unaffected by intermittent hypoxia. In humans, there is no definitive evidence regarding the effect of OSA on dyslipidemia. Several cross-sectional studies suggest that OSA is independently associated with increased levels of total cholesterol, low-density lipoprotein and triglycerides, whereas others report no such relationship. Some nonrandomized and randomized studies show that OSA treatment with continuous positive airway pressure may have a beneficial effect on lipid profile. Summary There is increasing evidence that intermittent hypoxia is independently associated with dyslipidemia. However, the role of OSA in causality of dyslipidemia remains to be established.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction. Lower urinary tract symptoms (LUTS) and erectile dysfunction (ED) are common problems in middle-aged and older men. Recently, epidemiologic studies have shown significant associations between severity of LUTS and male sexual dysfunction. Aim. We analyzed the role of prostate enlargement, LUTS, and prostate specific antigen (PSA) levels in the erectile function of Brazilian men who underwent prostate cancer (PCa) screening. Method. We analyzed data from 1,008 consecutive patients enrolled in a PCa screening program. Benign prostatic hyperplasia (BPH) was defined as a prostate weight greater than 30 g as defined by digital rectal examination. For statistical analysis, we used the chi-squared and analysis of variance tests. The odds ratios (OR) for correlation of ED with prostate volume LUTS and PSA were estimated using logistic regression models. Main Outcome Measure. The American Urological Association (AUA) symptom score for LUTS and the International Index of Erectile Function. Results. Mean patient age was 61.2 years (45-87) and median PSA value was 1.9 ng/mL. BPH was identified in 48.5% of patients. Mild, moderate, and severe LUTS were found in 52.3%, 30.9%, and 16.8% of cases, respectively. ED was classified as absent, mild, mild to moderate, moderate, and severe in 18.6%, 23.1%, 18.6%, 15.2%, and 24.5%, respectively. While only 5.4% of the patients with no ED presented severe LUTS, this finding was observed in 27.1% of patients with severe ED (P<0.001). Univariate logistic regression analysis demonstrated that age, prostate volume, AUA symptom score, and PSA levels were significant predictors of ED. However, when controlled for patient age, only LUTS remained as an independent predictor of ED. Conclusions. Controlling for patient age, LUTS are independent risk factors for the development of ED among Brazilian men who undergo PCa screening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sex-associated differences in hypertension have been observed repeatedly in epidemiological studies; however, the mechanisms conferring vascular protection to females are not totally elucidated. Sex-related differences in intracellular Ca(2+) handling or, more specifically, in mechanisms that regulate Ca(2+) entry into vascular smooth muscle cells have been identified as players in sex-related differences in hypertension-associated vascular dysfunction. Recently, new signalling components that regulate Ca(2+) influx, in conditions of intracellular store depletion, were identified: STIM1 (stromal interaction molecule 1), which works as an intracellular Ca(2+) sensor; and Orai1, which is a component of the CRAC (Ca(2+) release-activated Ca(2+)) channels. Together, these proteins reconstitute store-operated Ca(2+) channel function. Disturbances in STIM1/Orai1 signalling have been implicated in pathophysiological conditions, including hypertension. In the present article, we analyse evidence for sex-related differences in Ca(2+) handling and propose a new hypothesis where sex-related differences in STIM/Orai signalling may contribute to hypertension-associated vascular differences between male and female subjects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context Novel therapies have improved the remission rate in chronic inflammatory disorders including juvenile idiopathic arthritis (JIA). Therefore, strategies of tapering therapy and reliable parameters for detecting subclinical inflammation have now become challenging questions. Objectives To analyze whether longer methotrexate treatment during remission of JIA prevents flares after withdrawal of medication and whether specific biomarkers identify patients at risk for flares. Design, Setting, and Patients Prospective, open, multicenter, medication-withdrawal randomized clinical trial including 364 patients (median age, 11.0 years) with JIA recruited in 61 centers from 29 countries between February 2005 and June 2006. Patients were included at first confirmation of clinical remission while continuing medication. At the time of therapy withdrawal, levels of the phagocyte activation marker myeloid-related proteins 8 and 14 heterocomplex (MRP8/14) were determined. Intervention Patients were randomly assigned to continue with methotrexate therapy for either 6 months (group 1 [n = 183]) or 12 months (group 2 [n = 181]) after induction of disease remission. Main Outcome Measures Primary outcome was relapse rate in the 2 treatment groups; secondary outcome was time to relapse. In a prespecified cohort analysis, the prognostic accuracy of MRP8/14 concentrations for the risk of flares was assessed. Results Intention-to-treat analysis of the primary outcome revealed relapse within 24 months after the inclusion into the study in 98 of 183 patients (relapse rate, 56.7%) in group 1 and 94 of 181 (55.6%) in group 2. The odds ratio for group 1 vs group 2 was 1.02 (95% CI, 0.82-1.27; P=.86). The median relapse-free interval after inclusion was 21.0 months in group 1 and 23.0 months in group 2. The hazard ratio for group 1 vs group 2 was 1.07 (95% CI, 0.82-1.41; P=.61). Median follow-up duration after inclusion was 34.2 and 34.3 months in groups 1 and 2, respectively. Levels of MRP8/14 during remission were significantly higher in patients who subsequently developed flares (median, 715 [IQR, 320-1110] ng/mL) compared with patients maintaining stable remission (400 [IQR, 220-800] ng/mL; P=.003). Low MRP8/14 levels indicated a low risk of flares within the next 3 months following the biomarker test (area under the receiver operating characteristic curve, 0.76; 95% CI, 0.62-0.90). Conclusions In patients with JIA in remission, a 12-month vs 6-month withdrawal of methotrexate did not reduce the relapse rate. Higher MRP8/14 concentrations were associated with risk of relapse after discontinuing methotrexate.