141 resultados para Adapted motor activity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic Syndrome is a group of conditions related to obesity and physical inactivity. Little is known about the role of physical inactivity, in early stages of development, in the susceptibility to insulin resistant phenotype induced by high fat diet. Akt plays a key role in protein synthesis and glucose transport in skeletal muscle and has been regulated by muscle activity. The objective of present study was to determine the effect of early physical inactivity on muscle growth and susceptibility to acquire a diabetic phenotype and to assess its relationship with Akt expression. Forty Wistar male rats were distributed in two groups (standard group, Std) and movement restriction (RM). Between days 23 and 70 after birth, RM group was kept in small cages that did not allow them to perform relevant motor activity. From day 71 to 102 after birth, 10 rats of each group were fed with hyperlipidic diet (groups Std-DAG and RM-DAG). No differences were observed in total body weight although DAG increased epididymal fat pad weight. RM decreased significantly the soleus weight. Insulin-mediated glucose uptake was lower in RM-DAG group. Akt protein levels were lower in RM groups. Real time RT-PCR analysis showed that movement restriction decreased mRNA levels of AKT1 in soleus muscle, regardless of supplied diet. These findings suggest that early physical inactivity limits muscle`s growth and contributes to instauration of insulin resistant phenotype, which can be partly explained by dysregulation of Akt expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO(2)/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of an Na(+)-dependent cationic current and inhibition of a background K(+) current. Single-cell reverse transcription-PCR analysis of dissociated green fluorescent protein-labeled RTN neurons revealed expression of THIK-1 (TWIK-related halothane-inhibited K(+) channel, K(2P)13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na(+), and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO(2) levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated primarily by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Serotonin is a neurotransmitter that modulates several functions, such as food intake, energy expenditure, motor activity, mood and sleep. Acute exhaustive endurance exercise increases the synthesis, concentration and metabolism of serotonin in the brain. This phenomenon could be responsible for central fatigue after prolonged and exhaustive exercise. However, the effect of chronic exhaustive training on serotonin is not known. The present study was conducted to examine the effect of exhaustive endurance training on performance and serotonin concentrations in the hypothalamus of trained rats. Rats were divided into three groups: sedentary rats (SED), moderately trained rats (MOD) and exhaustively trained rats (EXT), with an increase of 200% in the load carried during the final week of training. Hypothalamic serotonin concentrations were similar between the SED and MOD groups, but were higher in the EXT group (P < 0.05). Performance was lower in the EXT group compared with the MOD group (P < 0.05). Thus, the present study demonstrates that exhaustive training increases serotonin concentrations in the hypothalamus, together with decreased endurance performance after inadequate recovery time. However, the mechanism underlying these changes remains unknown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

S100 beta is a soluble protein released by glial cells mainly under the activation of the 5-HT1A receptor. It has been reported as a neuro-trophic and -tropic factor that promotes neurite maturation and outgrowth during development. This protein also plays a role in axonal stability and the plasticity underlying long-term potentiation in adult brains. The ability of S100 beta to rapidly regulate neuronal morphology raises the interesting point of whether there are daily rhythm or gender differences in S100 beta level in the brain. To answer this question, the S100 beta expression in adult female and male rats, as well as in adult female CD-21 and S100 beta -/- female mice, were investigated. Scintillation counting and morphometric analysis of the immunoreactivity of S100 beta, showed rhythmic daily expression. The female and male rats showed opposite cycles. Females presented the highest value at the beginning of the rest phase (5:00 h), while in males the maximum value appeared in the beginning of the motor activity period (21:00 h). These results confirm previous S100 beta evaluations in human serum and cerebrospinal fluid reporting the protein`s function as a biomarker for brain damage (Gazzolo et al. in Clin Chem 49:967-970, 2003; Clin Chim Acta 330:131-133, 2003; Pediatr Res 58:1170-1174, 2005), similar behavior was also observed for GFAP in relation to Alzheimer Disease (Fukuyama et al. in Eur Neurol 46:35-38, 2001). The data should be taken into account when considering S100 beta as a biomarker of health condition. In addition, the results raise questions on which structure or condition imposes these rhythms as well as on the physiological meaning of the observed gender differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have adapted an actin-mosin motility assay to examine the interactions in vitro between actin cables isolated from the giant internodal cells of the freshwater alga, Nitella, and pigment granules extracted from red ovarian chromatophores of the freshwater palaemonid shrimp, Macrobrachium olfersi. The chromatophore pigment mass consists of large (0.5-1.0-mu m diameter) membrane-bounded granules, and small (140-nm diameter), a membranous granules, both structurally continuous with the abundant smooth endoplasmic reticulum. Our previous immunocytochemical studies show a myosin motor to be stably associated with the pigment mass; however, to which granule type or membrane the myosin motor is attached is unclear. Here, we show that sodium vanadate, a myosin ATPase inhibitor, markedly increases the affinity of isolated, large, membrane-bounded granules for Nitella actin cables to which they become permanently attached. This interaction does not occur in granule preparations containing ATP with uninhibited, active myosin without vanadate. We propose that a stable state of elevated affinity is established between the granule-located myosin motor and the Nitella actin cables, resulting from a vanadate-inhibited acto-myosin-ADP complex. This finding provides further evidence for a myosin motor positioned on the surface of the membrane-bounded pigment granules in shrimp ovarian chromatophores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brennecke, A, Guimaraees, TM, Leone, R, Cadarci, M, Mochizuki, L, Simao, R, Amadio, AC, and Serrao, J. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J Strength Cond Res 23(7): 1933-1940, 2009-The purpose of the present study was to investigate the effects of exercise order on the tonic and phasic characteristics of upper-body muscle activity during bench press exercise in trained subjects. The preexhaustion method involves working a muscle or a muscle group combining a single-joint exercise immediately followed by a multi-joint exercise (e. g., flying exercise followed by bench press exercise). Twelve subjects performed 1 set of bench press exercises with and without the preexhaustion method following 2 protocols (P1-flying before bench press; P2-bench press). Both exercises were performed at a load of 10 repetition maximum (10RM). Electromyography (EMG) sampled at 1 kHz was recorded from the pectoralis major (PM), anterior deltoid (DA), and triceps brachii (TB). Kinematic data (60 Hz) were synchronized to define upward and downward phases of exercise. No significant (p > 0.05) changes were seen in tonic control of PM and DA muscles between P1 and P2. However, TB tonic aspect of neurophysiologic behavior of motor units was significantly higher (p < 0.05) during P1. Moreover, phasic control of PM, DA, and TB muscles were not affected (p > 0.05). The kinematic pattern of movement changed as a result of muscular weakness in P1. Angular velocity of the right shoulder performed during the upward phase of the bench press exercise was significantly slower (p < 0.05) during P1. Our results suggest that the strategies set by the central nervous system to provide the performance required by the exercise are held constant throughout the exercise, but the tonic aspects of the central drive are increased so as to adapt to the progressive occurrence of the neuromuscular fatigue. Changes in tonic control as a result of the muscular weakness and fatigue can cause changes in movement techniques. These changes may be related to limited ability to control mechanical loads and mechanical energy transmission to joints and passive structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific methanogenic activity (SMA) test is an important tool for the monitoring of anaerobic digestion. This paper presents the behavior of the methanogenic archaea of an anaerobic sludge under different conditions of oxygenation in a fixed-bed anaerobic-aerobic reactor treating domestic sewage. The reactor was operated in a continuous manner under different liquid recycle ratios from aerobic to anaerobic zones in order to remove carbon and nitrogen. The application of the SMA test was adapted from several authors and the measurement of the accumulated methane in the reactor was carried out by means of gas chromatography. Methanogenic organisms were not inhibited by the presence of oxygen. In contrast, the values of CH, production rate by sludge exposed to oxygen were greater than those obtained for strictly anaerobic sludge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the frequent use of stepping motors in robotics, automation, and a variety of precision instruments, they can hardly be found in rotational viscometers. This paper proposes the use of a stepping motor to drive a conventional constant-shear-rate laboratory rotational viscometer to avoid the use of velocity sensor and gearbox and, thus, simplify the instrument design. To investigate this driving technique, a commercial rotating viscometer has been adapted to be driven by a bipolar stepping motor, which is controlled via a personal computer. Special circuitry has been added to microstep the stepping motor at selectable step sizes and to condition the torque signal. Tests have been carried out using the prototype to produce flow curves for two standard Newtonian fluids (920 and 12 560 mPa (.) s, both at 25 degrees C). The flow curves have been obtained by employing several distinct microstep sizes within the shear rate range of 50-500 s(-1). The results indicate the feasibility of the proposed driving technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. We assessed the orofacial involvement in JDM, and evaluated the possible association of gingival and mandibular mobility alterations with demographic data, periodontal indices, clinical features, muscle enzyme levels, JDM scores and treatment. Methods. Twenty-six JDM patients were studied and compared with 22 healthy controls. Orofacial evaluation included clinical features, dental and periodontal assessment, mandibular function and salivary flow. Results. The mean current age was similar in patients with JDM and controls (P > 0.05). A unique gingival alteration characterized by erythema, capillary dilation and bush-loop formation was observed only in JDM patients (61 vs 0%, P = 0.0001). The frequencies of altered mandibular mobility and reduced mouth opening were significantly higher in patients with JDM vs controls (50 vs 14%, P = 0.013; 31 vs 0%, P = 0.005). Comparison of the patients with and without gingival alteration showed that the former had lower values of median of cementoenamel junction (-0.26 vs -0.06 mm, P = 0.013) and higher gingival bleeding index (27.7 vs 14%, P = 0.046). This pattern of gingival alteration was not associated with periodontal disease [plaque index (P = 0.332) and dental attachment loss (P = 0.482)]. The medians for skin DAS and current dose of MTX were higher in JDM with gingival alteration (2.5 vs 0.5, P = 0.029; 28.7 vs 15, P = 0.012). A significant association of lower median manual muscle testing with a reduced ability to open the mouth was observed in patients with JDM than those without this alteration (79 vs 80, P = 0.002). Conclusions. The unique gingival pattern associated with cutaneous disease activity, distinct from periodontal disease, suggests that gingiva is a possible target tissue for JDM. In addition, muscle weakness may be a relevant factor for mandibular mobility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects. (C) 2011 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aversive nature of regenerative milieu is the main problem related to the failure of neuronal restoration in the injured spinal cord which however might be addressed with an adequate repair intervention. We evaluated whether glial cell line-derived neurotrophic factor (GDNF) may increase the ability of sciatic nerve graft, placed in a gap promoted by complete transections of the spinal cord, to enhance motor recovery and local fiber growth. Methods: Rats received a 4 mm-long gap at low thoracic level and were repaired with a fragment of the sciatic nerve. GDNF was added (NERVE+GDNF) or not to the grafts (NERVE-GDNF). Motor behavior score (BBB) and sensorimotor tests-linked to the combined behavior score (CBS), which indicate the degree of the motor improvement and the percentage of functional deficit, respectively, and also the spontaneous motor behavior in an open field by means of an infrared motion sensor activity monitor were analyzed. At the end of the third month post surgery, the tissue composed by the graft and the adjacent regions of the spinal cord was removed and submitted to the immunohistochemistry of the neurofilament-200 (NF-200), growth associated protein-43 (GAP-43), microtubule associated protein-2 (MAP-2), 5-hidroxytryptamine (serotonin, 5-HT) and calcitonin gene related peptide (CGRP). The immunoreactive fibers were quantified at the epicenter of the graft by means of stereological procedures. Results: Higher BBB and lower CBS levels (p < 0.001) were found in NERVE+GDNF rats. GDNF added to the graft increased the levels of individual sensorimotor tests mainly at the third month. Analysis of the spontaneous motor behavior showed decreases in the time and number of small movement events by the third month without changes in time and number of large movement events in the NERVE+GDNF rats. Immunoreactive fibers were encountered inside the grafts and higher amounts of NF-200, GAP-43 and MAP-2 fibers were found in the epicenter of the graft when GDNF was added. A small amount of descending 5-HT fibers was seen reentering in the adjacent caudal levels of the spinal cords which were grafted in the presence of GDNF, event that has not occurred without the neurotrophic factor. GDNF in the graft also led to a large amount of MAP-2 perikarya and fibers in the caudal levels of the cord gray matter, as determined by the microdensitometric image analysis. Conclusions: GDNF added to the nerve graft favored the motor recovery, local neuronal fiber growth and neuroplasticity in the adjacent spinal cord.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective is to verify the modulatory effects of bromazepam on EEG theta absolute power when subjects were submitted to a visuomotor task (i.e., car driver task). Sample was composed of 14 students (9 males and 5 females), right handed, with ages varying between 23 and 42 years (mean = 32.5 +/- 9.5), absence of mental or physical impairments, no psychoactive or psychotropic substance use and no neuromuscular disorders (screened by a clinical examination). The results showed an interaction between condition and electrodes (p=0.034) in favor of F8 electrode compared with F7 in both experimental conditions (t-test; p=0.001). Additionally, main effects were observed for condition (p=0.001), period (p=0.001) and electrodes (p=0.031) in favor of F4 electrode compared with F3. In conclusion, Br 6 mg of bromazepam may interfere in sensorimotor processes in the task performance in an unpredictable scenario allowing that certain visuospatial factors were predominant. Therefore, the results may reflect that bromazepam effects influence the performance of the involved areas because of the acquisition and integration of sensory stimuli processes until the development of a motor behavior based on the same stimuli. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aripiprazole is an atypical antipsychotic that acts as a partial agonist at the dopamine D-2 receptor. It has been mainly investigated in dopamine-based models of schizophrenia, while its effects on glutamate-based paradigms have remained to be further characterized. Due to its unique mechanism of action, aripiprazole has also been considered as a replacement medication for psychostimulant abuse. Thus, in the present study we tested the hypothesis that aripiprazole would prevent the motor hyperactivity induced by psychostimulant and psychotomimetic drugs that act either by dopaminergic or glutamatergic mechanisms. Male Swiss mice received injections of aripiprazole (0.1-1 mg/kg) followed by drugs that enhance the dopamine-mediated neurotransmission, amphetamine (3 mg/kg) or cocaine (5 mg/kg), or by glutamate NMDA-receptor antagonists, ketamine (60 mg/kg) or MK-801 (0.4 mg/kg). Independent groups also received aripiprazole (0.1-1 mg/kg) or haloperidol (0.5 mg/kg) and were tested for catalepsy. All doses of aripiprazole were effective in preventing the motor stimulant effects of amphetamine and cocaine. Moreover, the higher dose also prevented the effects of ketamine and MK-801. The present study reports the effects of aripiprazole in dopaminergic and glutamatergic models predictive of antipsychotic activity, suggesting that both may be useful for screening novel partial agonists with antipsychotic activity. It also shows that aripiprazole may prevent the acute effects of psychostimulant drugs without significant motor impairment. C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the potential antinociceptive and toxicity of Canavalia boliviana lectin (CboL) using different methods in mice. The role of carbohydrate-binding sites was also investigated. CboL given to mice daily for 14 days at doses of 5 mg/kg did not cause any observable toxicity. CboL (1, 5, and 10 mg/kg) administered to mice intravenously inhibited abdominal constrictions induced by acetic acid and the two phases of the formalin test. In the hot plate and tail immersion tests, the same treatment of CboL induced significant increase in the latency period. In the hot plate test, the effect of CboL (5 mg/kg) was reversed by naloxone (1 mg/kg), indicating the involvement of the opioid system. In the open-field and rota-rod tests, the CboL treatment did not alter animals` motor function. These results show that CboL presents antinociceptive effects of both central and peripheral origin, involving the participation of the opioid system via lectin domain.