159 resultados para ATP-sensitive K( ) channel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I(AA), in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation of the electrical characteristics of technical HTS tapes are of the key importance in determining the design and operational features of superconducting power apparatuses as well as to understand the external factors which affect the superconducting performance. In this work we report the systematic measurements of the electric field versus current density, E-J relation of short samples for three commercial HTS tapes (BSCCO-2223 tapes, with and without steel reinforcement, and YBCO-coated conductor) at 77 K. In order to get sensitive and noiseless voltage signals the measurements were carried out with DC transport current and subjecting the broad surface tape to DC (0-300 mT) and AC (0-62 mT, 60 Hz) magnetic fields. The voltage is measured by a sensitive nanovoltmeter and the applied magnetic field is monitored by a Hall sensor placed on the tape broad surface. The comparison between the results obtained from the three tapes was done by fitting a power-law equation for currents in the vicinity of the critical current. For the current regime below the critical one a linear correlation of the electric field against the current density is observed. The BSCCO samples presented the same behavior, i.e., a decreasing of n-index with the increasing DC and AC magnetic field strength. Under AC field the decreasing slope of n-index is steeper as compared to DC field. The n-index curve for the YBCO tape showed similar behavior for AC field, however under DC field in the 0-390 mT range exhibited a slight decreasing of the n-index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the mechanism by which extracellular acidification promotes relaxation in rat thoracic aorta. The relaxation response to HCl-induced extracellular acidification (7.4 to 6.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M) or KCl (45 mM). The vascular reactivity experiments were performed in endothelium-intact and denuded rings, in the presence or absence of indomethacin (10(-5) M), L-NAME (10(-4) M), apamin (10(-6) M), and glibenclamide (10(-5) M). The effect of extracellular acidosis (pH 7.0 and 6.5) on nitric oxide (NO) production was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M). The extracellular acidosis failed to induce any changes in the vascular tone of aortic rings pre-contracted with KCl, however, it caused endothelium-dependent and independent relaxation in rings pre-contracted with Phe. This acidosis induced-relaxation was inhibited by L-NAME, apamin, and glibenclamide, but not by indomethacin. The acidosis (pH 7.0 and 6.5) also promoted a time-dependent increase in the NO production by the isolated endothelial cells. These results suggest that extracellular acidosis promotes vasodilation mediated by NO, K(ATP) and SK(Ca), and maybe other K(+) channels in isolated rat thoracic aorta. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K-0.5 values for Na+ with minor alterations in K-0.5 values for K+ and N-H-4(+), causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 mu M ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na(+), K(+))-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 parts per thousand or 33 parts per thousand salinity. C ornatus is isosmotic after acclimation to 21 parts per thousand but is hyposmotic at 33 parts per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 parts per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH(4)(+) modulates enzyme affinity for K(+), which increases 187-fold in crabs acclimated to 33%. salinity. The (Na(+), K(+))-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 parts per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 parts per thousand), with little change in K(M) values (approximate to 50 mu mol L(-1)). K(+) together with NH(4)(+) synergistically stimulated activity to maximum rates of approximate to 240 nmol Pi min(-1) mg(-1). K, values for ouabain inhibition (approximate to 110 mu mol L(-1)) decreased to 44.9 +/- 1.0 mu mol L(-1) (21 parts per thousand) and 28.8 +/- 1.3 mu mol L(-1) (33 parts per thousand) in the presence of both K(+) and NH(4)(+). Assays employing various inhibitors suggest the presence of mitochondrial F(0)F(1)- and K(+)- and V-ATPase activities in the gill microsomes. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 parts per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH4+, discussed regarding NH4+ excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7 +/- 16.7 nmol Pi min(-1) mg(-1) and K(0.5) = 174.2 +/- 9.8 mmol L(-1) obeying cooperative kinetics (n(H) = 1.2). Stimulation by sodium (V = 308.9 +/- 15.7 nmol Pi min(-1) mg(-1), K(0.5) = 7.8 +/- 0.4 mmol L(-1)), magnesium (299.2 +/- 14.1 nmol Pi min(-1) mg(-1), K(0.5) = 767.3 +/- 36.1 mmol L(-1)), potassium (300.6 +/- 153 nmol Pi min(-1) mg(-1), K(0.5) = 1.6 +/- 0.08 mmol L(-1)) and ammonium (V = 345.1 +/- 19.0 nmol Pi min(-1) mg(-1), K(0.5) = 6.0 +/- 0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(1) = 45.1 +/- 2.5 mu mol L(-1), although affinity for the inhibitor increased (K(1) = 22.7 +/- 1.1 mu mol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Using longitudinal and prospective measures of trauma during childhood, the authors assessed the risk of developing psychotic symptoms associated with maltreatment, bullying, and accidents in a nationally representative U. K. cohort of young twins. Method: Data were from the Environmental Risk Longitudinal Twin Study, which follows 2,232 twin children and their families. Mothers were interviewed during home visits when children were ages 5, 7, 10, and 12 on whether the children had experienced maltreatment by an adult, bullying by peers, or involvement in an accident. At age 12, children were asked about bullying experiences and psychotic symptoms. Children`s reports of psychotic symptoms were verified by clinicians. Results: Children who experienced maltreatment by an adult (relative risk=3.16, 95% CI=1.92-5.19) or bullying by peers (relative risk=2.47, 95% CI=1.74-3.52) were more likely to report psychotic symptoms at age 12 than were children who did not experience such traumatic events. The higher risk for psychotic symptoms was observed whether these events occurred early in life or later in childhood. The risk associated with childhood trauma remained significant in analyses controlling for children`s gender, socioeconomic deprivation, and IQ; for children`s early symptoms of internalizing or externalizing problems; and for children`s genetic liability to developing psychosis. In contrast, the risk associated with accidents was small (relative risk=1.47, 95% CI=1.02-2.13) and inconsistent across ages. Conclusions: Trauma characterized by intention to harm is associated with children`s reports of psychotic symptoms. Clinicians working with children who report early symptoms of psychosis should inquire about traumatic events such as maltreatment and bullying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital hyperinsulinism (CHI) is a rare pancreatic beta-cell disease of neonates, characterized by inappropriate insulin secretion with severe persistent hypoglycemia, with regard to which many questions remain to be answered, despite the important acquisition of its molecular mechanisms in the last decade. The aim of this study was to examine pancreatic histology, beta-cell proliferation (immunohistochemistry with double staining for Ki-67/insulin), and beta-cell adenosine triphosphate-sensitive potassium channels genes from 11 Brazilian patients with severe medically unresponsive CHI who underwent pancreatectomy. Pancreatic histology and beta-cell proliferation in CHI patients were compared to pancreatic samples from 19 age-matched controls. Ten cases were classified as diffuse form (D-CHI) and 1 as focal form (F-CHI). beta-cell nucleomegaly and abundant cytoplasm were absent in controls and were observed only in D-CHI patients. The Ki-67 labeling index (Ki-67-LI) was used to differentiate the adenomatous areas of the F-CHI case (10.15%) from the ""loose cluster of islets`` found in 2 D-CHI samples (2.29% and 2.43%) and 1 control (1.54%) sample. The Ki-67-LI was higher in the F-CHI adenomatous areas, but D-CHI patients also had significantly greater Ki-67-LI (mean value = 2.41%) than age-matched controls (mean value = 1.87%) (P = 0.009). In this 1st genetic study of CHI patients in Brazil, no mutations or new polymorphisms were found in the 33-37 exons of the ABCC8 gene (SUR1) or in the entire exon of the KCNJ11 gene (Kir 6.2) in 4 of 4 patients evaluated. On the other hand, enhanced beta-cell proliferation seems to be a constant feature in CHI patients, both in diffuse and focal forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume- activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of similar to 75 mOsm. These currents display the typical biophysical signature of volume- activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(-)>Cl(-)>F(-)). Staurosporine (200 nM) did not block the activation of I(Cl), swell. The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 mu M), SITS (200 mu M), ATP (500 mu M), pyridoxalphosphate-6- azophenyl-2`,4`-disulfonate (PPADS; 100 mu M), and Suramin (10 mu M) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(d)(0) and fractional distance of the binding site (delta) of 334 mu M and 47%, 880 mu M and 35%, 2,100 mu M and 49%, 188 mu M and 27%, and 66.5 mu M and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that ICl, swell in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium (Ca) is critical for crustaceans due to their molting cycle and its presence in the carapace as calcium carbonate, apart from the usual functions of Ca, such as cell signalling. Ca transport in Dilocarcinus pagei, a freshwater crab, was studied in isolated cells from hepatopancreas to further characterize Ca transport mechanisms in these crabs. Cells were isolated and loaded with Fluo-3, a calcium fluorescent dye. Three different cell treatments were performed: Group 1 cells were Ca free during cell dissociation, and calcium was present (at 1mM) for fluorescence cell loading and transport experiments (FC); Group 2 cells were calcium free during cell dissociation and for transport experiments, but not during cell loading (LC); and Group 3 cells were Ca free during cell dissociation, cell loading and transport experiments (WC). Intracellular Ca was recorded through time after ATP was added to the cells and ATP caused an increase in Ca efflux within 30s in all cells. WC cells showed the smallest Ca efflux compared to the other cells, probably because it was intracellularly Ca ""depleted"". Vanadate and amiloride decreased the Ca efflux when ATP was added to the cells, while verapamil did not cause any effect in Ca efflux, confirming the presence of a Ca(2+)-ATPase sensitive to vanadate in hepatopancreas of D. pagei. In a different set of experiments, cells were also exposed to a Ca pulse of 1 and 10mM during 180s. 10mM Ca increased intracellular Ca compared to 1mM, and the increase was not recovered during the experimental time. Additionally, Ca influx was reduced by verapamil and amiloride, but not completely. The results suggest that Ca influx probably occurs through an undefined exchanger, apart from Ca channels (verapamil sensitive) and electrogenic 1Na(+)(1H(+))/1 Ca(2+) exchanger (amiloride-sensitive). Similarities between freshwater and seawater crabs, lobsters and crayfish in relation to plasma membrane Ca transporters, although the environment where they live is quite diverse, suggest that universal mechanisms for Ca homeostasis are widespread among crustaceans. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na(+)/K(+)-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na(+)/K(+)-ATPase expression and activity in rats injected with Bothrops alternatus snake venom. Methods: Male Wistar rats were injected with venom (0.8 mg/kg, iv.) and renal function was assessed 6.24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na(+)/K(+)-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively. Results: Venom caused lobulation of the capillary tufts, dilation of Bowman`s capsular space. F-actin disruption in Bowman`s capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na(+)/K(+)-ATPase alpha(1) subunit were increased 6 h post-venom, whereas Na(+)/K(+)-ATPase activity increased 6 h and 24 h post-venom. Conclusions: Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na(+)/K(+)-ATPase expression and activity in the early phase of renal damage. General significance: Enhanced Na(+)/K(+)-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell ( due to the. ring of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell K(ATP) channel conductance (G(K,ATP)) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC(50) of approximately 4 mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca(2+)](i) waves to spread with a speed of approximately 80 mu m s(-1), similar to that observed experimentally in confocal [Ca(2+)](i) imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 mu M) concentrations of forskolin, respectively. The expression of GLP-1 receptors in a cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on a cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates a cell electrical activity, increases [Ca(2+)] enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP]). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP],.