53 resultados para ACOUSTIC-OSCILLATIONS
Resumo:
The feasibility of characterizing the dynamics of a spouted bed based on acoustic emission (AE) signals is evaluated. Acoustic emission signals were measured in a semi-cylindrical Plexiglas column of diameter 150 mm and height 1000 mm with a conical base of internal angle 60 degrees and 25 mm inlet orifice diameter. Data were obtained for U/U(ms), from 0.3 to 2.0, static bed height from 250 to 500 mm, and glass beads of diameter 1.2 and 2.4 mm. AE signals reflected the effects of particle size and U/U(ms), but in general were insensitive to bed depth, even when there were drastic changes in spouting flow patterns. The results indicate that the AE signals were insensitive to the spouted bed hydrodynamics for the conditions studied. Overall, it appears that the AE analysis is unlikely to be a suitable technique for discriminating spouted bed flow regimes, at least for the range of frequencies and operating conditions investigated.
Resumo:
The goal of this paper is to study the global existence of small data solutions to the Cauchy problem for the nonlinear wave equation u(tt) - a(t)(2) Delta u = u(t)(2) - a(t)(2)vertical bar del u vertical bar(2). In particular we are interested in statements for the 1D case. We will explain how the interplay between the increasing and oscillating behavior of the coefficient will influence global existence of small data solutions. Copyright c 2011 John Wiley & Sons, Ltd.
Resumo:
Rats with a bilateral neonatal ventral hippocampus lesion (NVHL) are used as models of neurobiological aspects of schizophrenia. In view of their decreased number of GABAergic interneurons, we hypothesized that they would show increased reactivity to acoustic stimuli. We systematically characterized the acoustic reactivity of NVHL rats and sham operated controls. They were behaviourally observed during a loud white noise. A first cohort of 7 months` old rats was studied. Then the observations were reproduced in a second cohort of the same age after characterizing the reactivity of the same rats to dopaminergic drugs. A third cohort of rats was studied at 2, 3, 4, 5 and 6 months. In subsets of lesioned and control rats, inferior colliculus auditory evoked potentials were recorded. A significant proportion of rats (50-62%) showed aberrant audiogenic responses with explosive wild running resembling the initial phase of audiogenic seizures. This was not correlated with their well-known enhanced reactivity to dopaminergic drugs. The proportion of rats showing this strong reaction increased with rats` age. After the cessation of the noise, NVHL rats showed a long freezing period that did neither depend on the size of the lesion nor on the rats` age. The initial negative deflection of the auditory evoked potential was enhanced in the inferior colliculus of only NVHL rats that displayed wild running. Complementary anatomical investigations using X-ray scans in the living animal, and alizarin red staining of brain slices, revealed a thin layer of calcium deposit close to the medial geniculate nuclei in post-NVHL rats, raising the possibility that this may contribute to the hyper-reactivity to sounds seen in these animals. The findings of this study provide complementary information with potential relevance for the hyper-reactivity noted in patients with schizophrenia, and therefore a tool to investigate the underlying biology of this endophenotype. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object by qEEG gamma-band (30-100 Hz). It is involved in cognitive processes, memory, spatial/temporal and proprioceptive factors. Our hypothesis is that an increase in gamma coherence in frontal areas will be observed during moment preceding ball drop, due to their involvement in attention, planning, selection of movements, preparation and voluntary control of action and in central areas during moment after ball drop, due to their involvement in motor preparation, perception and execution of movement. However, through a paired t-test, we found an increase in gamma coherence for F3-F4 electrode pair during moment preceding ball drop and confirmed our hypothesis for C3-C4 electrode pair. We conclude that gamma plays an important role in reflecting binding of several brain areas in a complex motor task as observed in our results. Moreover, for selection of movements, preparation and voluntary control of action, motor preparation, perception and execution of movement, the integration of somatosensory and visual information is mandatory. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters` cells of organ of Corti, and in the spiral ganglion putative type I (1,009 m3) and type II (225 m3) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.
Resumo:
The metallic voice is usually confused with ring or nasality by singers and nontrained listeners. who are not used to perceptual vocal analysis. They believe a metallic voice results from a rise in fundamental frequency. A diagnostic error in this aspect may lead to lowering pitch, an incorrect procedure that Could Cause vocal overload and fatigue. The purpose of this article is to Study the quality of metallic voice considering the correlation between information of the physiological and acoustic plans, based on a perceptive consensual assumption. Fiberscopic video pharyngolaryngoscopy was performed on 21 professional singers while speaking vowel [e]-in normal and metallic modes to observe muscular movements and structural changes of the velopharynx, pharynx, and larynx. Vocal samples captured simultaneously to the fiberscopic examination were acoustically analyzed. Frequency and amplitude of the first four formants (F(1), F(2), F(3), and F(4)) were extracted by means of linear predictor coefficients (LPC) Spectrum and were statistically analyzed. Vocal tract adjustments such as velar lowering, pharyngeal wall narrowing, laryngeal rise, aryepiglottic, and lateral laryngeal constrictions were frequently found: there were no significant changes in frequency and amplitude of F(1) in the metallic voiced there were significant increases in amplitudes of F(2), F(3), and F(4) and in frequency for F, metallic Voice perceived as louder was correlated to an increase ill amplitude of F(3) and F(4). Physiological adjustments of velopharynx, pharynx, and larynx are combined in characterizing the metallic voice and can be acoustically related to changes in formant pattern.
Resumo:
Objectives/Hypothesis: Blood supply to the Hadad-Bassagasteguy pedicled nasoseptal flap may be interrupted by surgery of the pterygopalatine fossa, posterior septectomy, or large sphenoidotomies. This would preclude its use for reconstruction of skull base defects after expanded endonasal approaches (EEA). We present a novel method to ascertain the patency of the nasoseptal artery after prior surgery, and consequently the availability of the nasoseptal flap, using acoustic Doppler sonography. Study Design: Retrospective clinical review. Methods: Four patients who underwent EEAs were evaluated intraoperatively with acoustic Doppler sonography. The mucosa that covers the inferior aspect of the rostrum of the sphenoid sinus was scanned with the tip of the probe. Reflection of sound waves representing intravascular blood flow was assessed. Results: In three patients, the artery was identified in at least one side. One remaining patient showed no acoustic signal suggesting loss of the nasoseptal artery bilaterally, therefore necessitating the use of a fat graft for the reconstruction. Conclusions: Acoustic Doppler sonography seems to be a feasible and effective way to ascertain the availability of the nasoseptal artery. It is a relatively inexpensive and simple technique that can be performed by any endoscopic surgeon.
Resumo:
The goal of the present study was to explore the dynamics of the gamma band using the coherence of the quantitative electroencephalography (qEEG) in a sensorimotor integration task and the influence of the neuromodulator bromazepam on the band behavior. Our hypothesis is that the needs of the typewriting task will demand the coupling of different brain areas, and that the gamma band will promote the binding of information. It is also expected that the neuromodulator will modify this coupling. The sample was composed of 39 healthy subjects. We used a randomized double-blind design and divided subjects into three groups: placebo (n = 13), bromazepam 3 mg (n = 13) and bromazepam 6 mg (n = 13). The two-way ANOVA analysis demonstrated a main effect for the factors condition (i.e., C4-CZ electrode pair) and moment (i.e., C3-CZ, C3-C4 and C4-CZ pairs of electrodes). We propose that the gamma band plays an important role in the binding among several brain areas in complex motor tasks and that each hemisphere is influenced in a different manner by the neuromodulator. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The objective of the current study was to characterize the internal nasal dimensions of children with repaired cleft lip and palate and transverse maxillary deficiency, using acoustic rhinometry and analyze the changes caused by rapid maxillary expansion (RME). A convenience sampling of 19 cleft lip and palate individuals, aged 14 to 18 years, of both sexes, previously submitted to primary surgeries and referred for RME were analyzed prospectively at the Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Sao Paulo, Brazil. All patients underwent acoustic rhinometry before installation of the expansor and at 30 and 180 days after the active expansion phase. Nasal cross-sectional areas and volumes corresponding to the nasal valve (CSA(1) and V(1)) and the turbinates (CSA(2), CSA(3), and V(2)) regions were determined before and after nasal decongestion. Rapid maxillary expansion led to a statistically significant increase (P < 0.05) in mean CSA(1), CSA(2), V(1), and V(2) (without nasal decongestion) and in CSA(1) and V(1) (with decongestion) in the group as a whole. Individual data analysis showed that 58% of the patients responded positively to RME, with an average increase in CSA(1) of 26% (with decongestion), whereas 37% of the patients had no significant change. Only 1 patient (5%) showed a decrease. The findings contribute toward the characterization of nasal deformities determined by the cleft and demonstrate the positive effect RME had on nasal morphophysiology in a significant number of the patients who underwent this procedure.
Resumo:
This paper demonstrates by means of joint time-frequency analysis that the acoustic noise produced by the breaking of biscuits is dependent on relative humidity and water activity. It also shows that the time-frequency coefficients calculated using the adaptive Gabor transformation algorithm is dependent on the period of time a biscuit is exposed to humidity. This is a new methodology that can be used to assess the crispness of crisp foods. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.
Resumo:
The inhibitory effect of hydrogen peroxide (H(2)O(2)) on glucose-stimulated insulin secretion was previously reported. However, the precise mechanism involved was not systematically investigated. In this study, the effects of low concentrations of H(2)O(2) (5-10 mu mol/L) on glucose metabolism, intracellular calcium ([Ca(2+)](i)) oscillations, and dynamic insulin secretion in rat pancreatic islets were investigated. Low concentrations of H(2)O(2) impaired insulin secretion in the presence of high glucose levels (16.7 mmol/L). This phenomenon was observed already after 2 minutes of exposure to H(2)O(2). Glucose oxidation and the amplitude of [Ca(2+)](i); oscillations were dose-dependently suppressed by H(2)O(2). These findings indicate that low concentrations of H(2)O(2) reduce insulin secretion in the presence of high glucose levels via inhibition of glucose metabolism and consequent impairment in [Ca(2+)](i); handling. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The yeasts of the Malassezia genus are opportunistic microorganisms and can cause human and animal infections. They are commonly isolated from the skin and auricular canal of mammalians, mainly dogs and cats. The present study was aimed to isolate Malassezia spp. from the acoustic meatus of bats (Molossus molossus) in the Montenegro region, `` Rondonia ``, Brazil. From a total of 30 bats studied Malassezia spp. were isolated in 24 (80%) animals, the breakdown by species being as follows (one Malassezia sp. per bat, N=24): 15 (62.5%) M. pachydermatis, 5 (20.8%) M. furfur, 3 (12.5%) M. globosa and 1 (4.2%) M. sympodialis. This study establishes a new host and anatomic place for Malassezia spp., as it presents the first report ever of the isolation of this genus of yeasts in the acoustic meatus of bats.
Resumo:
The electrostatic geodesic mode oscillations are investigated in rotating large aspect ratio tokamak plasmas with circular isothermal magnetic surfaces. The analysis is carried out within the magnetohydrodynamic model including heat flux to compensate for the non-adiabatic pressure distribution along the magnetic surfaces in plasmas with poloidal rotation. Instead of two standard geodesic modes, three geodesic continua are found. The two higher branches of the geodesic modes have a small frequency up-shift from ordinary geodesic acoustic and sonic modes due to rotation. The lower geodesic continuum is a newzonal flowmode (geodesic Doppler mode) in plasmas with mainly poloidal rotation. Limits to standard geodesic modes are found. Bifurcation of Alfven continuum by geodesic modes at the rational surfaces is also discussed. Due to that, the frequency of combined geodesic continuum extends from the poloidal rotation frequency to the ion-sound band that can have an important role in suppressing plasma turbulence.
Resumo:
The development of circadian sleep-wakefulness rhythm was investigated by a longitudinal study of six normal infants. We propose an entropy based measure for the sleep/wake cycle fragmentation. Our results confirm that the sleep/wake cycle fragmentation and the sleep/wake ratio decrease, while the circadian power increases during the maturation process of infants. In addition to these expected linear trends in the variables devised to quantify sleep consolidation, circadian power and sleep/wake ratio, we found that they present infradian rhythms in the monthly range. (C) 2009 Elsevier B.V. All rights reserved.