34 resultados para 3D descriptors
Resumo:
In this paper, we present a 3D face photography system based on a facial expression training dataset, composed of both facial range images (3D geometry) and facial texture (2D photography). The proposed system allows one to obtain a 3D geometry representation of a given face provided as a 2D photography, which undergoes a series of transformations through the texture and geometry spaces estimated. In the training phase of the system, the facial landmarks are obtained by an active shape model (ASM) extracted from the 2D gray-level photography. Principal components analysis (PCA) is then used to represent the face dataset, thus defining an orthonormal basis of texture and another of geometry. In the reconstruction phase, an input is given by a face image to which the ASM is matched. The extracted facial landmarks and the face image are fed to the PCA basis transform, and a 3D version of the 2D input image is built. Experimental tests using a new dataset of 70 facial expressions belonging to ten subjects as training set show rapid reconstructed 3D faces which maintain spatial coherence similar to the human perception, thus corroborating the efficiency and the applicability of the proposed system.
Resumo:
Various significant anti-HCV and cytotoxic sesquiterpene lactones (SLs) have been characterized. In this work, the chemometric tool Principal Component Analysis (PCA) was applied to two sets of SLs and the variance of the biological activity was explored. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. The calculations were performed using VolSurf program. For anti-HCV activity, PC1 (First Principal Component) explained 30.3% and PC2 (Second Principal Component) explained 26.5% of matrix total variance, while for cytotoxic activity, PC1 explained 30.9% and PC2 explained 15.6% of the total variance. The formalism employed generated good exploratory and predictive results and we identified some structural features, for both sets, important to the suitable biological activity and pharmacokinetic profile.
Resumo:
Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Cytochrome P450 (CYP450) is a class of enzymes where the substrate identification is particularly important to know. It would help medicinal chemists to design drugs with lower side effects due to drug-drug interactions and to extensive genetic polymorphism. Herein, we discuss the application of the 2D and 3D-similarity searches in identifying reference Structures with higher capacity to retrieve Substrates of three important CYP enzymes (CYP2C9, CYP2D6, and CYP3A4). On the basis of the complementarities of multiple reference structures selected by different similarity search methods, we proposed the fusion of their individual Tanimoto scores into a consensus Tanimoto score (T(consensus)). Using this new score, true positive rates of 63% (CYP2C9) and 81% (CYP2D6) were achieved with false positive rates of 4% for the CYP2C9-CYP2D6 data Set. Extended similarity searches were carried out oil a validation data set, and the results showed that by using the T(consensus) score, not only the area of a ROC graph increased, but also more substrates were recovered at the beginning of a ranked list.