131 resultados para 290702 Mineral Processing
Resumo:
Using the previously described method for appearance function determination, described in Part I of this article, the breakage characterization of the main Carajas ore types was carried out. Based on such characteristics, the ball mill circuit performance was evaluated through simulations. The model described in the first part was used. The results were assessed by comparing ball mill products and cyclone overflow size distribution, as well as simulated recirculating loads. The simulations indicated the potential for processing such ore types at the Carajas grinding circuit, which until now was unknown.
Resumo:
Mine simulation depends on data that is both coherent and representative of the mining operation. This paper describes a methodology for modeling operational data which has been developed for mine simulation. The methodology has been applied to a case study of an open-pit mine, where the cycle times of the truck fleet have been modeled for mine simulation purposes. The results obtained have shown that once the operational data has been treated using the proposed methodology, the system variables have proven to be adherent to theoretical distributions. The research indicated the need jar tracking the origin of data inconsistencies through the development of a process to manage inconsistent data from the mining operation.
Resumo:
This study focuses on the technical feasibility of the utilization of waste from the cutting of granite to adjust the chemical composition of slag from steelworks LD, targeting the addition of clinker Portland cement. For this, chemical characterization of the waste, its mixture and fusion was performed, obtaining a CaO/SiO(2) relationship of around 0.9 to 1.2 for the steelworks slag. We selected samples of the waste, mixed, melted and cooled in water and in the oven. Samples cooled in water, after examining with X-ray difractrograms, had been predominantly amorphous. For samples cooled in the furnace, which had vitreous, there was the presence of mineralogical phases Akermanita and Gehlenita, which is considered as the ideal stage for the mineral water activity of the slag. The adjustment of the chemical composition of the slag from steel works by the addition of waste granite was efficient, transforming the waste into a product that is the same as blast furnace slag and can be used in the manufacture of cement.
Resumo:
This paper presents the results obtained with the production of briquettes from the steel grit found in the residue of ornamental rocks. The grit recovered by magnetic separation was characterized by titrimetric analysis, EDS (Electron Dispersive Spectroscopy) and X-ray diffraction for the analysis of iron concentration in the residue. The size and distribution of particles were obtained by the granulometric analysis method and scanning electron microscopy (SEM). The process resulted in a concentrate containing 93% metallic iron. The maximum load before fracture of the green briquettes was 1.02kN and of the dry briquettes was 3.59kN.
Resumo:
The calcium carbonate industry generates solid waste products which, because of their high alkaline content (CaO, CaCO(3) and Ca (OH)(2)), have a substantial impact on the environment. The objectives of this study are to characterize and classify the solid waste products, which are generated during the hydration process of the calcium carbonate industry, according to ABNT`s NBR 10.000 series, and to determine the potential and efficiency of using these solid residues to correct soil acidity. Initially, the studied residue was submitted to gross mass, leaching, solubility, pH. X-ray Diffractometry, Inductive Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), granularity and humidity analyses. The potential and efficiency of the residue for correcting soil acidity was determined by analysis of the quality attributes for soil correctives (PN, PRNT, Ca and Mg contents, granularity). Consequently, the results show that the studied residue may be used as a soil acidity corrective, considering that a typical corrective compound is recommended for each different type of soil. Additionally, the product must be further treated (dried and ground) to suit the specific requirements of the consumer market.
Resumo:
Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)
Resumo:
Duplex and superduplex stainless steels present superior mechanical and corrosion properties when compared to usual stainless steels. This superiority is based on chemical composition when in a balanced microstructure (approximately 50% of ferrite). During welding, changes may occur in both, the chemical composition and volume fraction of phases in the material, which may generate the presence of intermetallic phases and, as a consequence, modify the mechanical and corrosion properties of this group of stainless steels. The objective of this work is to apply ASTM A923- Practice A to verify the presence of intermetallic phases in welded joints of UNS 32750 su-perduplex stainless steel. Tubes of UNS 32750, with external diameters of 18 and 44 mm and a thickness of 1.5 mm, were welded using orbital GTAW, with filler metal 25Cr-10Ni-4Mo and a diameter of 0.8 mm. The metal-based and welded joints were characterized by optical and scanning electron microscopy. The results showed that there was no precipitation of the intermetallic phase, such as sigma phase, detected by ASTM A923, but the HAZ of the two tubes studied presented small regions with chromium nitrides, which can also change the properties of welded joins.
Resumo:
The evaporators of sugar plants in Brazil have used carbon steel intensively because of it is, a low priced material, which possesses inferior corrosion resistance. The materials more indicated for the substitution of carbon steel are stainless steels, however they are considered expensive. The environmental and financial performances of evaporator pipes constructed with carbon steel and with types AISI 304 444 and 439 stainless steel were evaluated. For the environmental evaluation, the Life Cycle Assessment (LCA) methodology Was used and it, revealed that stainless steel is more environmentally efficient than carbon steel. The life cycle costing (LCC) technique was the tool chosen for the financial evaluation and it showed that stainless steel is a better investment option compared to carbon steel. The results also indicate that LCA and LCC methodologies must be used together Therefore, it can he seen that safer environmental products can come to be the most profitable investment options.
Resumo:
For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered reduced activation ferritic martensitic (RAFM) steels as a structural material by suitable oxide dispersion strengthened ferritic martensitic steels would allow a substantial increase of the operating temperature from similar to 823 to about 923 K. Due to this reason the RAFM-alloy ODS-Eurofer has already been developed and produced with industrial partners. In the He-cooled modular divertor concept, where temperatures above 923 K will arise, an ODS-steel with a purely ferritic matrix is advantageous, because of missing phase transitions. Due to this reason, a special ferritic ODS-steel is being manufactured as well. In this work the microstructures of these two ODS-alloy types, analysed mainly by high resolution TEM are compared, with respect to different manufacturing processes. In addition first results of high resolution EBSD scans together with determined orientation maps of the RAFM steel ODS-Eurofer will also be presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A multiphase deterministic mathematical model was implemented to predict the formation of the grain macrostructure during unidirectional solidification. The model consists of macroscopic equations of energy, mass, and species conservation coupled with dendritic growth models. A grain nucleation model based on a Gaussian distribution of nucleation undercoolings was also adopted. At some solidification conditions, the cooling curves calculated with the model showed oscillations (""wiggles""), which prevented the correct prediction of the average grain size along the structure. Numerous simulations were carried out at nucleation conditions where the oscillations are absent, enabling an assessment of the effect of the heat transfer coefficient on the average grain size and columnar-to-equiaxed transition.
The importance of the industrialization of Brazilian shale when faced with the world energy scenario
Resumo:
This article discusses the importance of the industrialization of Brazilian shale based on factors such as: security of the national energy system security, global oil geopoliticsl, resources available, production costs, oil prices, environmental impacts and the national oil reserves. The study shows that the industrialization of shale always arises when issues such as peak oil or its geopolitics appear as factors that raise the price of oil to unrealistic levels. The article concludes that in the Brazilian case, shale oil may be classified as a strategic resource, economically viable, currently in development by the success of the retorting technology for extraction of shale oil and the price of crude oil. The article presents the conclusion that shale may be the driving factor for the formation of a technology park in Sao Mateus do Sul, due to the city`s economic dependence on Petrosix.
Resumo:
Austenitic stainless steels cannot be conventionally nitrided at temperatures near 550 degrees C due to the intense precipitation of chromium nitrides in the diffusion zone. The precipitation of chro-mium nitrides increases the hardness but severely impairs corrosion resistance. Plasma nitriding allows introducing nitrogen in the steel at temperatures below 450 degrees C, forming pre-dominantly expanded austenite (gamma(N)), with a crystalline structure best represented by a special triclin-ic lattice, with a very high nitrogen atomic concentration promoting high compressive residual stresses at the surface, increasing substrate hardness from 4 GPa up to 14 GPa on the nitrided case.
Resumo:
The present study was carried out on six different ore types from the Salitre Alkaline Complex aiming to determine their mineralogical composition and the major features that are relevant in the mineral processing. The P(2)O(5) grades vary from 9 to 25%. The slime content (-0, 020 mm) varies between 20 and 34% (w/w) and carries 17-22% of the P(2)O(5) content. The samples essentially consist of apatite, iron oxi-hydroxides, ilmenite, clay minerals, carbonate, quartz, pyroxene, perovskite, secondary phosphates and other minor accessory minerals. Below 0.21 mm, apatite essentially occurs in free particles showing a clean surface or a weak coating of it-on oxi-hydroxides; the highly covered apatite (not recoverable by flotation) varies from 6 to 9%. In the deslimed fraction (above 0.020 mm) more than 97% of the total phosphor content occurs as apatite; the estimated P 2 0 5 potential recovery in flotation concentration is over 90% (71-76% overall recovery).
Resumo:
Electromagnetic induction (EMI) method results are shown for vertical magnetic dipole (VMD) configuration by using the EM38 equipment. Performance in the location of metallic pipes and electrical cables is compared as a function of instrumental drift correction by linear and quadratic adjusting under controlled conditions. Metallic pipes and electrical cables are buried at the IAG/USP shallow geophysical test site in Sao Paulo City. Brazil. Results show that apparent electrical conductivity and magnetic susceptibility data were affected by ambient temperature variation. In order to obtain better contrast between background and metallic targets it was necessary to correct the drift. This correction was accomplished by using linear and quadratic relation between conductivity/susceptibility and temperature intending comparative studies. The correction of temperature drift by using a quadratic relation was effective, showing that all metallic targets were located as well deeper targets were also improved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Virtual Pole from Magnetic Anomaly (VPMA) is a new multi-disciplinary methodology that estimates the age of a source rock from its magnetic anomaly, taken directly from available aeromagnetic data. The idea is to use those anomalies in which a strong remanent magnetic component is likely to occur. Once the total magnetization of the anomaly is computed through any of the currently available methods, the line that connects all virtual paleogeographic poles is related with the position, on a paleogeographic projection, of the appropriate age fragment of the APWT curve. We applied this procedure to five (5) well-known magnetic anomalies of the South American plate in SE Brazil, all of them associated to alkaline complexes of Mesozoic age. The apparent ages obtained from VPMA on three of the anomalies where the radiometric age of the source rock is known - Tapira, Araxa and Juquia were inside the error interval of the published ages. The VPMA apparent ages of the other two, where the age of the source rock is not known (Registro and Pariqueracu magnetic anomalies) were geologically coherent. We expect that the application of the VPMA methodology as a reconnaissance geochronological tool may contribute to geological knowledge over continental areas, especially when the source rocks of the magnetic anomalies am unknown or buried below superficial sediments. (C) 2009 Elsevier B.V. All rights reserved.