395 resultados para PRESSURE VOLUMETRIC PROPERTIES
Resumo:
Introduction: This study assessed in vitro the physicochemical properties of 2 methacrylate resin-based sealers (Epiphany SE and Hybrid Root SEAL), comparing the results with a well-established epoxy resin-based sealer (AH Plus). Methods: Five samples of each material were used for each test (setting time, flow, radiopacity, dimensional change after setting, and solubility) according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. The samples were assigned to 3 groups: I, AH Plus; II, Epiphany SE; and III, Hybrid Root SEAL. The distilled and deionized water used at the solubility test was submitted to atomic absorption spectrometry to observe the presence of Ca2+, K+, Ni2+, and Zn2+ ions. In addition, the surface morphology of the specimens was analyzed by means of scanning electron microscopy (SEM). Statistical analysis was performed by using one-way analysis of variance and Tukey-Kramer test (P < .05). Results: Flow, radiopacity, and solubility of all sealers were in accordance with ANSI/ADA. The setting time of Hybrid Root SEAL did not agree with ANSUADA requirements. The dimensional change of all sealers was greater than the values considered acceptable by ANSI/ADA. The spectrometry analysis showed significant Ca2+ ions release for AH Plus. In SEM analysis, Hybrid Root SEAL presented spherical monomers with inferior size than AH Plus and Epiphany SE. Conclusions: It might be concluded that physicochemical properties of the tested sealers conformed to ANSI/ADA (2000) standardization, except for the setting time of Hybrid Root SEAL and the dimensional change of all sealers, which did not fulfill the ANSI/ADA requirements. (J Endod 2010;36:1531-1536)
Resumo:
Aim To compare a new root canal sealer based on Copaifera multijuga oil-resin (Biosealer) using three other established sealers (Sealer 26 (R), Endofill (R) and AH plus (R)) in terms of their physicochemical properties. Methodology The study was carried out according to the requirements of Specification Number 57 of the American Dental Association (ADA) and consisted of the following tests: setting time, flow, film thickness, dimensional stability, radiopacity and solubility/disintegration. Data were analysed statistically using anova and Tukey`s test for multiple comparisons. The significance level was set at 5% for all analyses. Results Sealer 26 (R) and AH Plus (R) had the longest setting time (P < 0.05). All materials presented flow in with the ADA`s guidelines. Regarding film thick-ness, Sealer 26 (R) did not have a satisfactory performance, as it had a higher mean value than the maximum allowed by the ADA (0.05 mm), being significantly different from the other materials (P < 0.05), which had mean values for film thickness in accordance with the ADA`s recommendations. Regarding the solubility and disintegration, only Endofill (R) did not meet the ADA`s specifications and presented the worst results of all materials (P < 0.05). Sealer 26 (R) presented the greatest dimensional changes and differed significantly from all other sealers (P < 0.05). Biosealer had the lowest radiopacity values and was significantly different from the other sealers (P < 0.05). Conclusion The experimental sealer based on Copaifera multijuga oil-resin presented satisfactory results in the physicochemical tests required by the ADA.
Resumo:
P>Aim To assess the physicochemical properties and the surface morphology of AH Plus, Epiphany, and Epiphany SE root canal sealers. Methodology Five samples of each material were employed for each test according to ANSI/ADA specification 57. The samples were assigned to four groups: (i) AH Plus; (ii) Epiphany; (iii) Epiphany + Thinning Resin; (iv) Epiphany SE. The distilled water used during the solubility test was submitted to spectrometry to verify the release of calcium ions. The morphologies of the external surface and the cross-section of the samples were analysed by means of a scanning electron microscope (SEM). Statistical analysis was performed by using One-Way anova and post hoc Tukey-Kramer tests with the null hypothesis set as 5%. Results Setting time, flow and radiopacity results were in accordance with ANSI/ADA requirements whereas the dimensional change of all sealers and solubility of Epiphany did not fulfil ANSI/ADA protocols. AH Plus and Epiphany SE were similar in terms of flow, radiopacity, solubility and dimensional change. The spectrometry test revealed significant calcium ion release from Epiphany with and without the thinning resin. SEM analysis revealed essentially a homogeneous surface with compact layer and some rough areas. Conclusions Setting time, flow, and radiopacity tests conformed to ANSI/ADA standardization. The dimensional change in all groups and the solubility of Epiphany were greater than values considered acceptable, with higher amounts of calcium ion release. Epiphany SE revealed more organized, compacted, and homogeneous polymers in a reduced resin matrix when compared with the other groups.
Resumo:
Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.
Resumo:
Purpose: This study evaluated the effect of the incorporation of the antimicrobial monomer methacryloyloxyundecylpyridinium bromide (MUPB) on the hardness, roughness, flexural strength, and color stability of a denture base material. Materials and Methods: Ninety-six disk-shaped (14-mm diameter x 4-mm thick) and 30 rectangular (65 x 10 x 3.3 mm(3)) heat-polymerized acrylic resin specimens were divided into three groups according to the concentration of MUPB (w/w): (A) 0%, (B) 0.3%, (C) 0.6%. Hardness was assessed by a hardness tester equipped with a Vickers diamond penetrator. Flexural strength and surface roughness were tested on a universal testing machine and a surface roughness tester, respectively. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 36 days of immersion in water, coffee, or wine. Variables were analyzed by ANOVA/Tukey HSD test (alpha = 0.05). Results: The following mean results (+/-SD) were obtained for hardness (A: 15.6 +/- 0.6, B: 14.6 +/- 1.7, C: 14.8 +/- 0.8 VHN; ANOVA: p = 0.061), flexural strength (A: 111 +/- 17, B: 105 +/- 12, C: 88 +/- 12 MPa; ANOVA: p = 0.008), and roughness (A: 0.20 +/- 0.11, B: 0.20 +/- 0.11, C: 0.24 +/- 0.08 mu m; ANOVA: p = 0.829). Color changes of immersed specimens were significantly influenced by solutions and time (A: 9.1 +/- 3.1, B: 14.8 +/- 7.5, C: 13.3 +/- 6.1 Delta E; ANOVA: p < 0.05). Conclusions: The incorporation of MUPB affects the mechanical properties of a denture base acrylic resin; however, the only significant change was observed for flexural strength and may not be critical. Color changes were slightly higher when resin containing MUPB was immersed in wine for a prolonged time; however, the difference has debatable clinical relevance.