396 resultados para Nei Lopes
Resumo:
Background-Fetal atrioventricular (AV) block is an uncommon lesion with significant mortality. Because of the rarity of this disorder, the natural course, extensive evaluation of untreated fetuses, and late follow-up remain unclear. Methods and Results-Of the 116 consecutive cases of fetal AV block studied from 1988 to 2006, only 1 was terminated, and 75% were live births. Fifty-nine cases of AV block were associated with major structural heart disease, mainly left atrial isomerism (n = 40), with only 26% of neonatal survivors. Of the 57 fetuses with normal cardiac anatomy, 41 (72%) were positive for maternal antinuclear antibodies, and 32 of these seropositive mothers did not receive any treatment. This untreated group had live-birth and 1-year infant survival rates of 93% and 90%, respectively. Five fetuses from seronegative mothers showed regression to sinus rhythm during pregnancy. The presence of major structural heart disease, hydrops, an atrial rate <= 120 bpm, and a ventricular rate <= 55 bpm were identified as risk factors for mortality. Logistic regression analysis of the whole group showed that the presence of structural heart disease was the only independent predictor of death (P < 0.001). Conclusions-This long-term study confirms that fetal AV block has a poor outcome when associated with structural heart disease and that spontaneous regression of AV block is possible in seronegative forms. The survival rate of >90% of our untreated patients with isolated forms of AV block raises concerns about any decision to intervene with immunosuppressive agents.
Resumo:
Bothropstoxin-I (BthTx-I) is a homodimerie Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which lacks hydrolytic activity against phospholipid substrates, yet permeabilizes membranes by a Ca2+- independent mechanism. The interaction of the BthTx-I with model membranes has been studied by intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. Nine separate mutants have been created each with a unique tryptophan residue located at a different position in the interfacial recognition site (IRS) of the protein. The rapid and efficient Ca2+-independent membrane damage against unilamellar liposomes composed of DPPC/DMPA in a 9:1 molar ratio was unaffected by these substitutions. Binding studies revealed low protein affinity for these liposomes and no changes were observed in the ITFE properties. In contrast, the binding of all mutants to DPPC/DMPA liposomes in a 1:1 molar ratio was stronger, and was correlated with altered ITFE properties. The blue-shifted emission spectra and increased emission intensity of mutants at positions 31, 67 and 115-117 in the interface recognition surface of the protein suggest these regions are partially inserted into the membrane. These results are consistent with a model for the Ca2+-independent membrane damaging mechanism that involves a transient interaction of the protein with the outer phospholipid leaflet of the target membrane. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Directed evolution techniques have been used to improve the thermal stability of the xylanase A from Bacillus subtilis (XylA). Two generations of random mutant libraries generated by error prone PCR coupled with a single generation of DNA shuffling produced a series of mutant proteins with increasing thermostability. The most Thermostable XylA variant from the third generation contained four mutations Q7H, G13R, S22P, and S179C that showed an increase in melting temperature of 20 degrees C. The thermodynamic properties Of a representative subset of nine XylA variants showing a range of thermostabilities were measured by thermal denaturation as monitored by the change in the far ultraviolet circular dichroism signal. Analysis of the data from these thermostable variants demonstrated a correlation between the decrease in the heat capacity change (Delta C(p)) with an increase in the midpoint of the transition temperature (T(m)) on transition from the native to the unfolded state. This result could not be interpreted within the context of the changes in accessible surface area of the protein on transition from the native to unfolded states. Since all the mutations are located at the surface of the protein, these results suggest that an explanation of the decrease in Delta C(p) on should include effects arising from the prot inlsolvent interface.
Resumo:
The aim of the present study was to report the occurrence of serious subnutrition, associated to intestinal bacterial overgrowth, in two patients submitted to bariatric surgery. Two female patients (body mass index, 49 and 50 kg/m(2), respectively) were submitted to Y-en-Roux gastric bypass. The first patient evolved a 52% loss of body weight within 21 months after surgery; the other, a 34% loss of initial body weight within 15 months after surgery, results corresponding, respectively, to 62 and 45 kg weight losses. However, both patients reported asthenia, hair fallout, and edema, and one also reported diarrhea, but none was feverish. Their respective albuminemias were of 24 and 23 g/l. A respiratory hydrogen test suggested bacterial hyperproliferation. Thirty days after ciprofloxacin and tetracyclin treatments, they showed improved albumin levels and nutritional states, both confirmed by results of hydrogen breath tests. Bacterial overgrowth is an important complication that can compromise clinical evolution of patients submitted to intestinal surgery like gastroplasty with Y-Roux anastomosis. In cases of clinical suspicion or a confirmed diagnosis, adequate antibiotics, sometimes requiring to be cyclically repeated, should be administered.
Resumo:
Cell therapy constitutes a possibility for improving nerve regeneration, increasing the success of nerve repair. We evaluate the use of mononuclear cells in the regeneration of the sciatic nerve after axotomy followed by end-to-end neurorrhaphy. Forty adult male Wistar rats (250300 g) were divided into four groups: (1) sham, (2) neurorrhaphy: the sciatic nerve was sectioned and repaired using epineural sutures, (3) culture medium: after the suture, received an injection of 10 mu L of culture medium into the nerve, and (4) mononuclear cell: after the suture, a concentration of 3 X 10(6) of mononuclear cell was injected in epineurium region. Mononuclear cells were obtained from the bone marrow aspirates and separated by Ficoll-Hypaque method. The histological analyses were performed at the 4th postoperative day. The sciatic functional index, histological, and morphometric analyzes were used to evaluate nerve regeneration at the 6th postoperative week. Six rats were used for immunohistochemical analysis on the 4th postoperative day. In the group 4, on the fourth day, the histological analysis demonstrated a more accelerated degenerative process and an increase of the neurotrophic factors was observed. In the 6th week, all the morphometric results of the group 4 were statistically better compared with groups 2 and 3. There was a statistically significant improvement in the sciatic functional index for group 4 compared with groups 2 and 3. Mononuclear cells stimulated nerve regeneration, most probably by speeding up the Wallerian degeneration process as well as stimulating the synthesis of neurotrophic factors. Microsc. Res. Tech. 74:355-363, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
A DNA vaccine expressing dengue-4 virus premembrane (prM) and envelope (E) genes was produced by inserting these genes into a mammalian expression plasmid (pCI). Following a thorough screening, including confirmation of protein expression in vitro, a recombinant clone expressing these genes was selected and used to immunize BALB/c mice. After 3 immunizations all the animals produced detectable levels of neutralizing antibodies against dengue-4 virus. The cytokines levels and T cell proliferation, detected ex vivo from the spleen of the immunized mice, showed that our construction induced substantial immune stimulation after three doses. Even though the antibody levels, induced by our DNA vaccine, were lower than those obtained in mice immunized with dengue-4 virus the levels of protection were high with this vaccine. This observation is further supported by the fact that 80% of the vaccine immunized group was protected against lethal challenge. In conclusion, we developed a DNA vaccine employing the genes of the prM and E proteins from dengue-4 virus that protects mice against this virus. (C) 2010 Elsevier Ltd. All rights reserved.