480 resultados para laser model
Resumo:
To develop a rat model of erectile dysfunction (ED) after cavernous nerve injury. Given the great similarity between the anatomical structure of the cavernous nerve in rats and humans, 24 rats underwent dissections and the cavernous nerves were identified with the aid of an operating microscope. Then the rats were randomized into two groups: sham-operated controls and a bilateral cavernous nerve section group. At 3 months after surgery, the rats were evaluated for their response to an apomorphine challenge. The erectile response after an apomorphine challenge was normal in all the control rats, while there were no erections in the bilateral injured group. The rat major autonomic ganglion and its cavernous nerve can be identified with the aid of a microscope. Rats are inexpensive and easy to handle, thus a good animal for developing an ED model of cavernous nerve injury. In the present study, the rats with cavernous nerve injury lost erectile capacity in a reliable and reproducible fashion. Because of the great similarity between the cavernous nerve of rats and humans, one may consider this technique as a reliable experimental model for studying ED after radical prostatectomy.
Resumo:
PURPOSE. To assess whether baseline Glaucoma Probability Score (GPS; HRT-3; Heidelberg Engineering, Dossenheim, Germany) results are predictive of progression in patients with suspected glaucoma. The GPS is a new feature of the confocal scanning laser ophthalmoscope that generates an operator-independent, three-dimensional model of the optic nerve head and gives a score for the probability that this model is consistent with glaucomatous damage. METHODS. The study included 223 patients with suspected glaucoma during an average follow-up of 63.3 months. Included subjects had a suspect optic disc appearance and/or elevated intraocular pressure, but normal visual fields. Conversion was defined as development of either repeatable abnormal visual fields or glaucomatous deterioration in the appearance of the optic disc during the study period. The association between baseline GPS and conversion was investigated by Cox regression models. RESULTS. Fifty-four (24.2%) eyes converted. In multivariate models, both higher values of GPS global and subjective stereophotograph assessment ( larger cup-disc ratio and glaucomatous grading) were predictive of conversion: adjusted hazard ratios (95% CI): 1.31 (1.15 - 1.50) per 0.1 higher global GPS, 1.34 (1.12 - 1.62) per 0.1 higher CDR, and 2.34 (1.22 - 4.47) for abnormal grading, respectively. No significant differences ( P > 0.05 for all comparisons) were found between the c-index values ( equivalent to area under ROC curve) for the multivariate models (0.732, 0.705, and 0.699, respectively). CONCLUSIONS. GPS values were predictive of conversion in our population of patients with suspected glaucoma. Further, they performed as well as subjective assessment of the optic disc. These results suggest that GPS could potentially replace stereophotograph as a tool for estimating the likelihood of conversion to glaucoma.
Resumo:
Background and objective: Dynamic indices represented by systolic pressure variation and pulse pressure variation have been demonstrated to be more accurate than filling pressures in predicting fluid responsiveness. However, the literature is scarce concerning the impact of different ventilatory modes on these indices. We hypothesized that systolic pressure variation or pulse pressure variation could be affected differently by volume-controlled ventilation and pressure-controlled ventilation in an experimental model, during normovolaemia and hypovolaemia. Method: Thirty-two anaesthetized rabbits were randomly allocated into four groups according to ventilatory modality and volaemic status where G1-ConPCV was the pressure-controlled ventilation control group, G2-HemPCV was associated with haemorrhage, G3-ConVCV was the volume-controlled ventilation control group and G4-HemVCV was associated with haemorrhage. In the haemorrhage groups, blood was removed in two stages: 15% of the estimated blood volume withdrawal at M1, and, 30 min later, an additional 15% at M2. Data were submitted to analysis of variance for repeated measures; a value of P < 0.05 was considered to be statistically significant. Results: At MO (baseline), no significant differences were observed among groups. At M1, dynamic parameters differed significantly among the control and hypovolaemic groups (P < 0.05) but not between ventilation modes. However, when 30% of the estimated blood volume was removed (M2), dynamic parameters became significantly higher in animals under volume-controlled ventilation when compared with those under pressure-controlled ventilation. Conclusions: Under normovolaemia and moderate haemorrhage, dynamic parameters were not influenced by either ventilatory modalities. However, in the second stage of haemorrhage (30%), animals in volume-controlled ventilation presented higher values of systolic pressure variation and pulse pressure variation when compared with those submitted to pressure-controlled ventilation.
Resumo:
PURPOSE: To compare the abilities of scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) and variable corneal compensation (VCC) modes for detection of retinal nerve fiber layer (RNFL) loss in eyes with band atrophy (BA) of the optic nerve. DESIGN. Cross-sectional study. METHODS: Thirty-seven eyes from 37 patients with BA and temporal visual field defect from chiasmal compression and 40 eyes from 40 healthy subjects were studied. Subjects underwent standard automated perimetry and RNFL measurements using an SLP device equipped with VCC and ECC. Receiver operating characteristic (ROC) curves were calculated for each parameter. Pearson correlation coefficients were obtained to evaluate the relationship between RNFL thickness parameters and severity of visual field loss, as assessed by the temporal mean defect. RESULTS: All RNFL thickness parameters were significantly lower in eyes with BA compared with normal eyes with both compensation modes. However, no statistically significant differences were observed in the areas under the ROC curves for the different parameters between GDx VCC and ECC (Carl Zeiss Meditec, Inc, Dublin, California, USA). Structure-function relationships also were similar for both compensation modes. CONCLUSIONS: No significant differences were found between the diagnostic accuracy of GDx ECC and that of VCC for detection of BA of the optic nerve. The use of GDx ECC does not seem to provide a better evaluation of RNFL loss on the temporal and nasal sectors of the peripapillary retina in subjects with BA of the optic nerve.
Resumo:
Background. Periodontal disease is often associated with systemic diseases and is characterized by destruction of the tissues supporting the teeth. Patients using immunosuppressive drugs such as tacrolimus are among those who suffer from tissue destruction. Objective. We sought to evaluate the effects of laser and photodynamic therapies (PDT; nonsurgical) as an adjunct to scaling and rootplaning (SRP) in the treatment of corona-induced periodontitis in rats immunosuppressed with tacrolimus (Prograf). Materials and Methods. The animals were divided into 5 groups. Each groups had 6 rats. Group I, the control group, received only saline solution throughout the study period of 42 days and did not receive periodontal treatment; group II received saline solution and SRP; group III received tacrolimus (1 mg/kg per day) and was treated with SRP; group IV animals were treated identically to group III and then administered laser treatment; and in group V, the animals were treated identically to group III and then administered PDT. Results. Statistical analysis indicated decreased bone loss with the progression of time (P = .035). There was no difference between the bone loss associated with the types of treatment administered to groups I, II, and III (P > .9) or groups IV and V (P > .6). The analysis also indicated that immunosuppression was not a bone loss-determining factor. Conclusion. Laser and PDT therapies were effective as an adjunctive treatment to SRP in reducing bone loss caused by experimental periodontitis induced in animals being treated systemically with tacrolimus.
Resumo:
Introduction: The pterygopalatine fossa (PPF) is a narrow space located between the posterior wall of the antrum and the pterygoid plates. Surgical access to the PPF is difficult because of its protected position and its complex neurovascular anatomy. Endonasal approaches using rod lens endoscopes, however, provide better visualization of this area and are associated with less morbidity than external approaches. Our aim was to develop a simple anatomical model using cadaveric specimens injected with intravascular colored silicone to demonstrate the endoscopic anatomy of the PPF. This model could be used for surgical instruction of the transpterygoid approach. Methods: We dissected six PPF in three cadaveric specimens prepared with intravascular injection of colored material using two different injection techniques. An endoscopic endonasal approach, including a wide nasoantral window and removal of the posterior antrum wall, provided access to the PPF. Results: We produced our best anatomical model injecting colored silicone via the common carotid artery. We found that, using an endoscopic approach, a retrograde dissection of the sphenopalatine artery helped to identify the internal maxillary artery (IMA) and its branches. Neural structures were identified deeper to the vascular elements. Notable anatomical landmarks for the endoscopic surgeon are the vidian nerve and its canal that leads to the petrous portion of the internal carotid artery (ICA), and the foramen rotundum, and V2 that leads to Meckel`s cave in the middle cranial fossa. These two nerves, vidian and V2, are separated by a pyramidal shaped bone and its apex marks the ICA. Conclusion: Our anatomical model provides the means to learn the endoscopic anatomy of the PPF and may be used for the simulation of surgical techniques. An endoscopic endonasal approach provides adequate exposure to all anatomical structures within the PPF. These structures may be used as landmarks to identify and control deeper neurovascular structures. The significance is that an anatomical model facilitates learning the surgical anatomy and the acquisition of surgical skills. A dissection superficial to the vascular structures preserves the neural elements. These nerves and their bony foramina, such as the vidian nerve and V2, are critical anatomical landmarks to identify and control the ICA at the skull base.
Resumo:
Background Changes in the shape of the capnogram may reflect changes in lung physiology. We studied the effect of different ventilation/perfusion ratios (V/Q) induced by positive end-expiratory pressures (PEEP) and lung recruitment on phase III slope (S(III)) of volumetric capnograms. Methods Seven lung-lavaged pigs received volume control ventilation at tidal volumes of 6 ml/kg. After a lung recruitment maneuver, open-lung PEEP (OL-PEEP) was defined at 2 cmH(2)O above the PEEP at the onset of lung collapse as identified by the maximum respiratory compliance during a decremental PEEP trial. Thereafter, six distinct PEEP levels either at OL-PEEP, 4 cmH(2)O above or below this level were applied in a random order, either with or without a prior lung recruitment maneuver. Ventilation-perfusion distribution (using multiple inert gas elimination technique), hemodynamics, blood gases and volumetric capnography data were recorded at the end of each condition (minute 40). Results S(III) showed the lowest value whenever lung recruitment and OL-PEEP were jointly applied and was associated with the lowest dispersion of ventilation and perfusion (Disp(R-E)), the lowest ratio of alveolar dead space to alveolar tidal volume (VD(alv)/VT(alv)) and the lowest difference between arterial and end-tidal pCO(2) (Pa-ETCO(2)). Spearman`s rank correlations between S(III) and Disp(R-E) showed a =0.85 with 95% CI for (Fisher`s Z-transformation) of 0.74-0.91, P < 0.0001. Conclusion In this experimental model of lung injury, changes in the phase III slope of the capnograms were directly correlated with the degree of ventilation/perfusion dispersion.
Resumo:
Recent studies have investigated whether low level laser therapy (LLLT) can optimize human muscle performance in physical exercise. This study tested the effect of LLLT on muscle performance in physical strength training in humans compared with strength training only. The study involved 36 men (20.8 +/- 2.2 years old), clinically healthy, with a beginner and/or moderate physical activity training pattern. The subjects were randomly distributed into three groups: TLG (training with LLLT), TG (training only) and CG (control). The training for TG and TLG subjects involved the leg-press exercise with a load equal to 80% of one repetition maximum (1RM) in the leg-press test over 12 consecutive weeks. The LLLT was applied to the quadriceps muscle of both lower limbs of the TLG subjects immediately after the end of each training session. Using an infrared laser device (808 nm) with six diodes of 60 mW each a total energy of 50.4 J of LLLT was administered over 140 s. Muscle strength was assessed using the 1RM leg-press test and the isokinetic dynamometer test. The muscle volume of the thigh of the dominant limb was assessed by thigh perimetry. The TLG subjects showed an increase of 55% in the 1RM leg-press test, which was significantly higher than the increases in the TG subjects (26%, P = 0.033) and in the CG subjects (0.27%, P < 0.001). The TLG was the only group to show an increase in muscle performance in the isokinetic dynamometry test compared with baseline. The increases in thigh perimeter in the TLG subjects and TG subjects were not significantly different (4.52% and 2.75%, respectively; P = 0.775). Strength training associated with LLLT can increase muscle performance compared with strength training only.
Resumo:
Introduction. Lung transplantation has become the mainstay therapy for patients with end-stage lung disease refractory to medical management. However, the number of patients listed for lung transplantation largely exceeds available donors. The study of lung preservation requires accurate, cost-effective small animal models. We have described a model of ex vivo rat lung perfusion using a commercially available system. Methods. Male Wistar rats weighing 250 g-300 g were anesthetized with intraperitoneal sodium thiopental (50 mg/kg body weight). The surgical technique included heart-lung block extraction, assembly, and preparation for perfusion and data collection. We used an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus, Holliston, Mass, United States; Hugo Sachs Elektronik, Alemanha). Results. Preliminary results included hemodynamic and pulmonary mechanics data gathered in the experiments. Conclusion. The isolated rat lung perfusion system is a reliable method to assess lung preservation.
Resumo:
Objective: To assess the ability of a three-layer graft in the closuse of large fetal skin defects. Methods: Ovine fetuses underwent a large (4 x 3 cm) full-thickness skin defect over the lumbar region at 105 days` gestation (term = 140 days). A bilaminar artificial skin was placed over a cellulose interface to cover the defect (3-layer graft). The skin was partially reapproximated with a continuous nylon suture. Pregnancy was allowed to continue and the surgical site was submitted to histopathological analysis at different post-operative intervals. Results: Seven fetuses underwent surgery. One maternal/fetal death occurred, and the remaining 6 fetuses were analyzed. Artificial skin adherence to the wound edges was observed in cases that remained in utero for at least 15 days. Neoskin was present beneath the silicone layer of the bilaminar artificial skin. Conclusions: Our study shows that neoskin can develop in the fetus using a 3-layer graft, including epidermal growth beneath the silicone layer of the bilaminar skin graft. These findings suggest that the fetus is able to reepithelialise even large skin defects. Further experience is necessary to assess the quality of this repair.
Resumo:
Peripheral nerves are structures that, when damaged, can result in significant motor and sensory disabilities. Several studies have used therapeutic resources with the aim of promoting early nerve regeneration, such as the use of low-power laser. However, this laser therapy does not represent a consensus regarding the methodology, thus yielding controversial conclusions. The objective of our study was to investigate, by functional evaluation, the comparative effects of low-power laser (660 nm and 830 nm) on sciatic nerve regeneration following crushing injuries. Twenty-seven Wistar rats subjected to sciatic nerve injury were divided into three groups: group sham, consisting of rats undergoing simulated irradiation; a group consisting of rats subjected to gallium-aluminum-arsenide (GaAlAs) laser at 660 nm (10 J/cm(2), 30 mW and 0.06 cm(2) beam), and another one consisting of rats subjected to GaAlAs laser at 830 nm (10 J/cm(2), 30 mW and 0.116 cm(2)). Laser was applied to the lesion for 21 days. A sciatic functional index (SFI) was used for functional evaluation prior to surgery and on days 7, 14, and 21 after surgery. Differences in SFI were found between group 660 nm and the other ones at the 14th day. One can observe that laser application at 660 nm with the parameters and methods utilised was effective in promoting early functional recovery, as indicated by the SFI, over the period evaluated.
Resumo:
Objective: To study the influence of low power GaAsAl laser irradiation on the regeneration of a peripheral nerve, following a controlled crush injury. Material and methods: The right common fibular nerve of 30 Wistar rats was submitted to a crush injury with an adjustable load forceps (5 000 g, 10 minutes of application). The animals were divided into three groups (n=10), according to the postoperative procedure (no irradiation; sham irradiation; effective irradiation). Laser irradiation (830 nm wave-length; 100 mW emission power; continuous mode; 140 J/cm(2)) was started on the first postoperative day and continued over 21 consecutive days. Body mass, time spent on the walking track and functional peroneal index (PFI) were analyzed based on the hind footprints, both preoperatively and on the 21st postoperative day. Results: Walking time and PFI significantly improved in the group that received effective laser irradiation, despite the significant gain in body mass between the pre- and post-operative periods. Conclusion: Low Power GaAsAl laser irradiation, with the parameters used in our study, accelerated and improved fibular nerve regeneration in rats.
Resumo:
The objective of this study was to adapt a model of hind limb immobilization to newly weaned female rats and to determine the morphology of shortened soleus and plantaris muscles. Female Wistar rats were divided into three groups: control zero (n = 3) and control and free (n = 8), animals aged 21 and 31 days, respectively, submitted to no intervention, and immobilized (n = 25), animals aged 21 days submitted to immobilization for 10 days and sacrificed at 31 days of age. The device used for immobilization had advantages such as easy connection, good fit, and low cost. The immobilized rats showed a reduction in muscle fiber area and in connective tissue. The adaptation of this immobilization model originally used for adult rats was an excellent alternative for newly weaned rats and was also efficient in inducing significant hind limb disuse.
Resumo:
Introduction: The vertebrae fixation system using pedicular screws is one of the most efficient methods to treat vertebral spine pathologies. When the screw is submitted to pullout strength, it causes internal tension near the medullar canal and this situation can be analyzed by using the photoelasticity technique. Objective: Were analyzed those internal tensions near the medullar canal of photoelastic vertebra models using different sizes of screws of the vertebral fixation system submitted to pullout strength. Methods: A lumbar vertebral model made of photoelastic material with three different USS1-type pedicular screw sizes (5, 6, and 7 mm) was used. The internal tensions around the screw were tested in 12 predetermined points by a plain transmission polaroscope. Results: The areas of greater tension concentration were between the medullar canal and the curves of the transverse process. Comparing the maximum average pulling tension, statistical differences were observed between screws 5 and 7, and 6 and 7. On the other hand, for screws 5 and 6, there were no significant differences. Conclusion: The study evidenced that the internal tensions are greater in irregular areas, next to the medullar canal, showing that this is a critical region.
Resumo:
Objective: This study seeks to determine, through functional gait assessment in different irradiation sites, the influence of a low-intensity GaAsAl laser beam on an injury caused by crushing the peroneal nerve in rats. Methods: 53 rats were used, which were divided into six groups: normal, injured and untreated, injured and treated using placebo, injured and treated in the bone marrow, injured and treated in the nerve, and injured and treated in both (nerve and bone marrow). The peroneal nerve was crushed using a pair of tweezers, and subsequently treated with laser for 28 consecutive days. The functional gait evaluation analyzed the footprints, which were recorded with a video camera on an acrylic bridge in the preoperative period, and on postoperative days 14, 21 and 28, and assessed using PFI formula software. Results: In the functional gait evaluation, significant differences were found only on postoperative day 14. Conclusion: Based on the functional gait evaluation, low-intensity GaAs AI irradiation was able to accelerate and reinforce the process of peripheral nerve regeneration in rats on postoperative day 14, both in the bone marrow- and in the nerve-treated groups.