395 resultados para Koskimies, Kalervo: Enhän minä mikään ollut


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAMOS, D. S. C. R. OLIVO. F. D. QUIRINO SANTOS LOPES, A. C. TOLEDO, M. A. MARTINS, R. A. LAZO OSORIO. M. DOLHNIKOFF, W. RIBEIRO, and R. R VIEIRA. Low-Intensity Swimming Training Partially Inhibits Lipopolysaccharide-Induced Acute Lung Injury. Med. Sci. Sports Exerc.. Vol. 42, No. 1, pp. 113-119, 2010. Background: Aerobic exercise-decreases pulmonary inflammation and remodeling in experimental models of allergic asthma. However, the effects of aerobic exercise oil pulmonary inflammation of nonallergic Origin, such as in experimental models of acute long injury induced by lipopolysaccharide (LPS), have not been evaluated. Objective: The present study evaluated file effects of aerobic exercise in a model of LPS-induced acute lung injury. Methods: BALB/c mice were divided into four groups: Control, Aerobic Exercise, LPS, and Aerobic Exercise + LPS. Swimming tests were conducted at baseline and at 3 and 6 wk. Low-Intensity swimming training was performed for 6 wk, four times per week, 60 min per session. Intranasal LPS (1 mg.kg(-1) (60 mu g per mouse)) was instilled 24 It after the last swimming physical test in the LPS and Aerobic Exercise + LPS mice, and the animals were studied 24 It after LPS instillation. Exhaled nitric oxide, respiratory mechanics, total and differential cell Counts in bronchoalveolar lavage, and lung parenchymal inflammation and remodeling were evaluated. Results: LPS instillation resulted in increased levels of exhaled nitric oxide (P < 0.001), higher numbers of neutrophils in file bronchoalveolar lavage (P < 0.001) and in the lung parenchyma (P < 0.001), and decreased lung tissue resistance (P < 0.05) and volume proportion of elastic fibers (P < 0.01) compared with the Control group. Swim training in LPS-instilled animals resulted in significantly lower exhaled nitric oxide levels (P < 0.001) and fewer nelltrophils in the bronchoalveolar lavage (P < 0.001) and the lung parenchyma (P < 0.01) compared with the LPS group. Conclusions: These results Suggest that low-intensity swimming training inhibits lung neutrophilic inflammation, but not remodeling and impaired lung mechanics, in a model of LPS-induced acute lung injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: There is scarce information on the potential benefits of immunosuppression in children with myocarditis and viral genomes in myocardium. We investigated the occurrence of myocarditis in children with a preliminary diagnosis of dilated cardiomyopathy, the frequency of cardiotropic viruses in the myocardium, and the response to immunosuppression. Methods: Thirty patients (nine months to 12 years) with left ventricular ejection fraction of 22.8 +/- 4.1% were subjected to right cardiac catheterization and endomyocardial biopsy. Specimens were analyzed for the presence of inflammatory elements (Dallas criteria) and viral genome (polymerase chain reaction). Patients with active myocarditis received immunosuppressants (azatioprine and prednisone) and were recatheterized nine months later. A historical control group of nine patients with myocarditis who did not receive immunosuppressants was included. Results: Active myocarditis was diagnosed in ten patients (five with viral genomes detected). Immunosuppression resulted in a significant increase in left ventricular ejection fraction from 25.2 +/- 2.8% to 45.7 +/- 8.6% (versus 20.0 +/- 4.0% to 22.0 +/- 9.0% in historical controls, p < 0.01) and cardiac index from 3.28 +/- 0.51 L/min/m(2) to 4.40 +/- 0.49 L/min/m(2) (versus 3.50 +/- 0.40 L/min/m(2) to 3.70 +/- 0.50 L/min/m(2) in controls, p < 0.01), regardless of the presence of viral genomes (p - 0.98 and p - 0.22, respectively for the two variables). No relevant clinical events were observed. Non-inflammatory cardiomyopathy was diagnosed in 20 patients (seven with viral genomes). While on conventional therapy, there were four deaths and three assignments to transplantation, and no improvement of left ventricular ejection fraction in the remaining ones (22.5 +/- 3.6% to 27.5 +/- 10.6%). Conclusion: Children with chronic myocarditis seem to benefit from immunosuppressive therapy, regardless of the presence of viral genome in the myocardium. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. The functional haemodynamic variables pulse pressure variation (PPV), stroke volume variation (SVV), and systolic pressure variation (SPV) are widely used to assess haemodynamic status. However, it is not known how these perform during acute lung injury (ALI). This study evaluated the effects of different ventilatory strategies on haemodynamic parameters in pigs with ALI during normovolaemia and hypovolaemia. Methods. Eight anaesthetized Agroceres pigs [40 (1.9) kg] were instrumented with pulmonary artery, PiCCO, and arterial catheters and ventilated. Three ventilatory settings were randomly assigned for 10 min each: tidal volume (VT) 15 ml kg(-1) and PEEP 5 cm H(2)O, VT 8 ml kg(-1) and PEEP 13 cm H(2)O, or VT 6 ml kg(-1) and PEEP 13 cm H(2)O. Data were collected at each setting at baseline, after ALI (lung lavage+Tween 1.5%), and ALI with hypovolaemia (haemorrhage to 30% of estimated blood volume). Results. At baseline, high VT increased PPV, SVV, and SPV (P < 0.05 for all). During ALI, high VT significantly increased PPV and SVV [(P = 0.002 and P = 0.008) respectively.]. After ALI with hypovolaemia, ventilation at VT 6 ml kg(-1) and PEEP 13 cm H(2)O decreased the accuracy of functional haemodynamic variables to predict hypovolaemia, with the exception of PPV (area under the curve 0.875). The parameters obtained by PiCCO were less influenced by ventilatory changes. Conclusions. VT is the ventilatory parameter which influences functional haemodynamics the most. During ventilation with low VT and high PEEP, most functional variables are less able to accurately predict hypovolaemia secondary to haemorrhage, with the exception of PPV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The swine is an essential model for carrying out preclinical research and for teaching complex surgical procedures. There is a lack of experimental models describing anatomical and surgical aspects of total pancreatectomy in the pig. Materials and Methods: The experiments were performed on 10 white male swine weighing 27-33 kg. The animals were premedicated with midazolam (0.4 mg/kg, i.m.) and ketamine (4 mg/kg, i.m.). Anesthesia was induced with propofol (1-2 mg/kg, i.v.) and was maintained with propofol and fentanyl (0.3 mg and 0.1 mu g/kg/min, respectively, i.v.). The surgical period ranged from 44 to 77 min. The pancreas anatomy, and the main arterial, venous and pancreatic duct anatomy were assessed. Results: The pancreas anatomy was composed of 3 lobes, the `splenic`, `duodenal` and `connecting` lobe which is attached to the anterior portion of the portal vein. The splenic artery and the junction of the splenic vein and portal vein were divided. The left gastric artery was dissected and separated from its origin at the splenic artery. The head of the pancreas is disposed in a C shape. The pancreas was dissected and liberated from the right portion of the portal vein and the infrahepatic vena cava. The pancreas was separated from the duodenum preserving the pancreaticoduodenal artery, then we performed the total pancreatectomy preserving the duodenum, common bile duct and spleen. Conclusion: Total pancreatectomy with duodenum, bile duct and spleen preservation in the pig is feasible and an important instrument for research purposes and teaching surgical technique. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the effects of different mechanical ventilation (MV) strategies on the mucociliary system. Experimental study. Twenty-seven male New Zealand rabbits. After anesthesia, animals were tracheotomized and ventilated with standard ventilation [tidal volume (Vt) 8 ml/kg, positive end expiratory pressure (PEEP) 5 cmH(2)O, flow 3 L/min, FiO(2) 0.4] for 30 min. Next, animals were randomized into three groups and ventilated for 3 h with low volume (LV): Vt 8 ml/kg, PEEP 5 cmH(2)O, flow 3 L/min (n = 6); high volume (HV): Vt 16 ml/kg, PEEP 5 cmH(2)O, flow 5 L/min (n = 7); or high pressure (HP): Ppeak 30 cmH(2)O, PEEP 12 cmH(2)O (n = 8). Six animals (controls) were ventilated for 10 min with standard ventilation. Vital signals, blood lactate, and respiratory system mechanics were verified. Tracheal tissue was collected before and after MV. Lung and tracheal tissue sections were stained to analyze inflammation and mucosubstances by the point-counting method. Electron microscopy verified tracheal cell ultrastructure. In situ tracheal ciliary beating frequency (CBF), determined using a videoscopic technique, and tracheal mucociliary transport (TMCT), assessed by stereoscopic microscope, were evaluated before and after MV. Respiratory compliance decreased in the HP group. The HV and HP groups showed higher lactate levels after MV. Macroscopy showed areas of atelectasis and congestion on HV and HP lungs. Lung inflammatory infiltrate increased in all ventilated groups. Compared to the control, ventilated animals also showed a reduction of total and acid mucus on tracheal epithelium. Under electron microscopy, injury was observed in the ciliated cells of the HP group. CBF decreased significantly after MV only in the HP group. TMCT did not change significantly in the ventilated groups. Different MV strategies induce not only distal lung alterations but also morphological and physiological tracheal alterations leading to mucociliary system dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Objectives: Sleep apnea is common in patients with congestive heart failure, and may contribute to the progression of underlying heart diseae. Cardiovascular and metabolic complications of sleep apnea have been attributed to intermittent hypoxia. Elevated free fatty acids (FFA) are also associated with the progression of metabolic, vascular, and cardiac dysfunction. The objective of this study was to determine the effect of intermittent hypoxia on FFA levels during sleep in patients with heart failure. Design and interventions: During sleep, frequent blood samples were examined for FFA in patients with stable heart (ejection fraction < 40%). In patients with severe sleep apnea (apnea-hypopnea index = 15.4 +/- 3.7 events/h; average low SpO(2) = 93.6%). In patients with severe sleep apnea, supplemental oxygen at 2-4 liters/min was administered on a subsequent night to eliminate hypoxemia. Measurements and Results: Prior to sleep onset, controls and patients with severe apnea exhibited a similar FFA level. After sleep onset, patients with severe sleep apnea exhibited a marked and rapid increase in FFA relative to control subjects. This increase persisted throughout NREM and REM sleep exceeding serum FFA levels in control subjects by 0.134 mmol/L (P = 0.0038) Supplemental oxygen normalized the FFA profile without affecting sleep architecture or respiratory arousal frequency. Conclusion: In patients with heart failure, severe sleep apnea causes surges in nocturnal FFA that may contribute to the accelerated progression of underlying heart disease. Supplemental oxygen prevents that FFA elevation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims: Submucosal injection of a viscoelastic solution prolongs submucosal lift, thus, facilitating endoscopic mucosal resection. Our objective was to assess the safety and clinical effectiveness of 0.4% hydroxypropyl methylcellulose (HPMC) as a submucosal injectant for endoscopic mucosal resection. Patients and Methods: A prospective, open-label, multicenter, phase 2 study was conducted at 2 academic institutions in Brazil. Eligible participants included patients with early gastrointestinal tumors larger than 10 mm. Outcomes evaluated included complete resection rates, volume of HPMC injected, duration of the submucosal cushion as assessed visually, histology of the resected leisons, and complication rates. Results: Over a 12-month period, 36 eligible patients with superficial neoplastic lesions (stomach 14, colon 11, rectum 5, esophagus 3, duodenum 3) were prospectively enrolled in the study. The mean size of the resected specimen was 20.4 mm (10 to 60 mm). The mean volume of 0.4% HPMC injected was 10.7 mL (range 4 to 35 mL). The mean duration of the submucosal fluid cushion was 27 minutes (range 9 to 70 min). Complete resection was successfully completed in 89%. Five patients (14%) developed immediate bleeding requiring endoclip and APC application. Esophageal perforation occurred in 1 patient requiring surgical intervention. There were no local or systemic adverse events related to HPMC use over the follow-up period (mean 2.2 mo). Conclusion: HPMC solution (0.4%) provides an effective submucosal fluid cushion and is safe for endoscopic resection of early gastrointestinal neoplastic lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Objectives: Metabolic syndrome (MetSyn) increases overall cardiovascular risk. MetSyn is also strongly associated with obstructive sleep apnea (OSA), and these 2 conditions share similar comorbidities. Whether OSA increases cardiovascular risk in patients with the MetSyn has not been investigated. We examined how the presence of USA in patients with MetSyn affected hemodynamic and autonomic variables associated with poor cardiovascular outcome. Design: Prospective clinical study. Participants: We studied 36 patients with MetSyn (ATP-III) divided into 2 groups matched for age and sex: (1) MetSyn+OSA (n = 18) and (2) MetSyn-OSA (n = 18). Measurements: USA was defined by an apnea-hypopnea index (AHI) > 15 events/hour by polysomnography. We recorded muscle sympathetic nerve activity (MSNA - microneurography), heart rate (HR), and blood pressure (BP - Finapres). Baroreflex sensitivity (BRS) was analyzed by spontaneous BP and HR fluctuations. Results: MSNA (34 +/- 2 vs 28 +/- 1 bursts/min, P = 0.02) and mean BP (111 +/- 3 vs. 99 +/- 2 mm Hg, P = 0.003) were higher in patients with MetSyn+OSA versus patients with MetSyn-USA. Patients with MetSyn+OSA had lower spontaneous BRS for increases (7.6 +/- 0.6 vs 12.2 +/- 1.2 msec/mm Hg, P = 0.003) and decreases (7.2 +/- 0.6 vs 11.9 +/- 1.6 msec/mm Hg, P = 0.01) in BP. MSNA was correlated with AHI (r = 0.48; P = 0.009) and minimum nocturnal oxygen saturation (r = -0.38, P = 0.04). Conclusion: Patients with MetSyn and comorbid USA have higher BP, higher sympathetic drive, and diminished BRS, compared with patients with MetSyn without USA. These adverse cardiovascular and autonomic consequences of USA may be associated with poorer outcomes in these patients. Moreover, increased BP and sympathetic drive in patients with MetSyn+OSA may be linked, in part, to impairment of baroreflex gain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives The objective of this study was to evaluate the natural history of untreated schistosomiasis-associated pulmonary arterial hypertension (Sch-PAH) patients as compared to idiopathic pulmonary arterial hypertension (IPAH) with respect to hemodynamics recorded at presentation and 36 months survival. Background Schistossomiasis (Sch) is one of the most prevalent chronic infectious diseases in the world. Nevertheless data regarding one of its most severe clinical complications, pulmonary arterial hypertension (PAH), is scarce. Methods We retrospectively analyzed case notes of all consecutive patients diagnosed of Sch-PAH and IPAH referred to the Heart Institute in Sao Paulo, Brazil, between 2004 and 2008. None of the Sch-PAH received PAH specific treatment whereas all IPAH patients did. Results Sch-PH patients (n = 54) had less severe pulmonary hypertension as evidenced by lower levels of pulmonary vascular resistance (11.3 +/- 11.3 W vs. 16.7 +/- 10.6 W; p = 0.002) and mean pulmonary artery pressure (56.7 +/- 18.7 mm Hg vs. 64.6 +/- 17.4 mm Hg; p = 0.01) and higher cardiac output (4.62 +/- 1.5 l/min vs. 3.87 +/- 1.5 l/min; p = 0.009) at presentation than IPAH patients (n = 95). None of the Sch-PAH patients demonstrated a positive response to acute vasodilator testing, whereas 16.2% of IPAH patients did (p = 0.015). Survival rates at 1, 2, and 3 years were 95.1%, 95.1%, and 85.9% and 95%, 86%, and 82%, for Sch-PAH and IPAH, respectively (p = 0.49). Both groups had a higher survival rate when compared to IPAH survival as estimated by the NIH equation (71%, 61%, and 52%, respectively). Conclusions Sch-PAH has a more benign clinical course than IPAH despite a lack of demonstrable acute vasoreactivity at hemodynamic evaluation. (J Am Coll Cardiol 2010; 56: 715-20) (C) 2010 by the American College of Cardiology Foundation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of fuel emissions is crucial for understanding the pathogenesis of mortality because of air pollution. The objective of this study is to assess cardiovascular and inflammatory toxicity of diesel and biodiesel particles. Mice were exposed to fuels for 1 h. Heart rate (HR), heart rate variability, and blood pressure were obtained before exposure, as well as 30 and 60 min after exposure. After 24 h, bronchoalveolar lavage, blood, and bone marrow were collected to evaluate inflammation. B100 decreased the following emission parameters: mass, black carbon, metals, CO, polycyclic aromatic hydrocarbons, and volatile organic compounds compared with B50 and diesel; root mean square of successive differences in the heart beat interval increased with diesel (p < 0.05) compared with control; low frequency increased with diesel (p < 0.01) and B100 (p < 0.05) compared with control; HR increased with B100 (p < 0.05) compared with control; mean corpuscular volume increased with B100 compared with diesel (p < 0.01), B50, and control (p < 0.001); mean corpuscular hemoglobin concentration decreased with B100 compared with B50 (p < 0.001) and control (p < 0.05); leucocytes increased with B50 compared with diesel (p < 0.05); platelets increased with B100 compared with diesel and control (p < 0.05); reticulocytes increased with B50 compared with diesel, control (p < 0.01), and B100 (p < 0.05); metamyelocytes increased with B50 and B100 compared with diesel (p < 0.05); neutrophils increased with diesel and B50 compared with control (p < 0.05); and macrophages increased with diesel (p < 0.01), B50, and B100 (p < 0.05) compared with control. Biodiesel was more toxic than diesel because it promoted cardiovascular alterations as well as pulmonary and systemic inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Perioperative complications following robotic-assisted radical prostatectomy (RARP) have been previously reported in recent series. Few studies, however, have used standardized systems to classify surgical complications, and that inconsistency has hampered accurate comparisons between different series or surgical approaches. Objective: To assess trends in the incidence and to classify perioperative surgical complications following RARP in 2500 consecutive patients. Design, setting, and participants: We analyzed 2500 patients who underwent RARP for treatment of clinically localized prostate cancer (PCa) from August 2002 to February 2009. Data were prospectively collected in a customized database and retrospectively analyzed. Intervention: All patients underwent RARP performed by a single surgeon. Measurements: The data were collected prospectively in a customized database. Complications were classified using the Clavien grading system. To evaluate trends regarding complications and radiologic anastomotic leaks, we compared eight groups of 300 patients each, categorized according the surgeon`s experience (number of cases). Results and limitations: Our median operative time was 90 min (interquartile range [IQR]: 75-100 min). The median estimated blood loss was 100 ml (IQR: 100-150 ml). Our conversion rate was 0.08%, comprising two procedures converted to standard laparoscopy due to robot malfunction. One hundred and forty complications were observed in 127 patients (5.08%). The following percentages of patients presented graded complications: grade 1, 2.24%; grade 2, 1.8%; grade 3a, 0.08%; grade 3b, 0.48%; grade 4a, 0.40%. There were no cases of multiple organ dysfunction or death (grades 4b and 5). There were significant decreases in the overall complication rates (p = 0.0034) and in the number of anastomotic leaks (p < 0.001) as the surgeon`s experience increased. Conclusions: RARP is a safe option for treatment of clinically localized PCa, presenting low complication rates in experienced hands. Although the robotic system provides the surgeon with enhanced vision and dexterity, proficiency is only accomplished with consistent surgical volume; complication rates demonstrated a tendency to decrease as the surgeon`s experience increased. (C) 2010 European Association of Urology. Published by Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Subsequent ischaemic episodes may induce renal resistance. P21 is a cell cycle inhibitor that may be induced by oxygen-free radicals and may have a protective effect in ischaemic acute kidney injury (AKI). This study aimed at evaluating the role of oxidative stress and p21 on tubular resistance in a model of acquired resistance after renal ischaemia and in isolated renal tubules. Methods. Wistar rats were divided into: Group 1-sham; Group 2-sham operated and after 2 days submitted to 45-min ischaemia; and Group 3-45-min ischaemia followed after 2 days by a second 45-min ischaemia. Plasma urea was evaluated on Days 0, 2 and 4. Serum creatinine, creatinine clearance and oxidants (thiobarbituric acid-reactive substances) were determined 48 h after the second procedure (Day 4). Histology, immunohistochemistry for lymphocytes (CD3), macrophages (ED1), proliferation (PCNA) and apoptosis (TUNEL) were also evaluated. Rat proximal tubules (PTs) were isolated by collagenase digestion and Percoll gradient from control rats and rats previously subjected to 35 min of ischaemia. PTs were submitted to 15-min hypoxia followed by 45-min reoxygenation. Cell injury was assessed by lactate dehydrogenase release and hydroperoxide production (xylenol orange). Results. Ischaemia induced AKI in Group 2 and 3 rats. Subsequent ischaemia did not aggravate renal injury, demonstrating renal resistance (Group 3). Renal function recovery was similar in Group 2 and 3. Plasma and urine oxidants were similar among in Group 2 and 3. Histology disclosed acute tubular necrosis in Group 2 and 3. Lymphocyte infiltrates were similar among all groups whereas macrophages infiltrate was greater in Group 3. Cell proliferation was greater in Group 2 compared with Group 3. Apoptosis was similar in groups 2 and 3. The p21 expression was increased only in Group 3 whereas it was similar in groups 1 and 2. PTs from the ischaemia group were sensitive to hypoxia but resistant to reoxygenation injury which was followed by lower hydroperoxide production compared to control PT. Conclusion. Renal resistance induced by ischaemia was associated with cell mechanism mediators involving oxidative stress and increased p21 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301: F355-F363, 2011. First published May 18, 2011; doi: 10.1152/ajprenal.00729.2010.-Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 mu g.kg(-1).min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Renal failure is the most important comorbidity in patients with heart transplantation, it is associated with increased mortality. The major cause of renal dysfunction is the toxic effects of calcineurin inhibitors (CNI). Sirolimus, a proliferation signal inhibitor, is an imunossupressant recently introduced in cardiac transplantation. Its nonnephrotoxic properties make it an attractive immunosuppressive agent for patients with renal dysfunction. In this study, we evaluated the improvement in renal function after switching the CNI to sirolimus among patients with new-onset kidney dysfunction after heart transplantation. Methods. The study included orthotopic cardiac transplant (OHT) patients who required discontinuation of CNI due to worsening renal function (creatinine clearance <50 mL/min). We excluded subjects who had another indication for initiation of sirolimus, that is, rejection, malignancy, or allograft vasculopathy. The patients were followed for 6 months. The creatinine clearance (CrCl) was estimated according to the Cockcroft-Gault equation using the baseline weight and the serum creatinine at the time of introduction of sirolimus and 6 months there after. Nine patients were included, 7 (78%) were males and the overall mean age was 60.1 +/- 12.3 years and time since transplantation 8.7 +/- 6.1 years. The allograft was beyond 1 year in all patients. There was a significant improvement in the serum creatinine (2.98 +/- 0.9 to 1.69 +/- 0.5 mg/dL, P = .01) and CrCl (24.9 +/- 6.5 to 45.7 +/- 17.2 mL/min, P = .005) at 6 months follow-up. Conclusion. The replacement of CNI by sirolimus for imunosuppressive therapy for patients with renal failure after OHT was associated with a significant improvement in renal function after 6 months.