398 resultados para ALTERED EXPRESSION
Resumo:
Muscle degenerative diseases such as Duchenne Muscular Dystrophy are incurable and treatment options are still restrained. Understanding the mechanisms and factors responsible for muscle degeneration and regeneration will facilitate the development of novel therapeutics. Several recent studies have demonstrated that Galectin-1 (Gal-1), a carbohydrate-binding protein, induces myoblast differentiation and fusion in vitro, suggesting a potential role for this mammalian lectin in muscle regenerative processes in vivo. However, the expression and localization of Gal-1 in vivo during muscle injury and repair are unclear. We report the expression and localization of Gal-1 during degenerative-regenerative processes in vivo using two models of muscular dystrophy and muscle injury. Gal-1 expression increased significantly during muscle degeneration in the murine mdx and in the canine Golden Retriever Muscular Dystrophy animal models. Compulsory exercise of mdx mouse, which intensifies degeneration, also resulted in sustained Gal-1 levels. Furthermore, muscle injury of wild-type C57BL/6 mice, induced by BaCl(2) treatment, also resulted in a marked increase in Gal-1 levels. Increased Gal-1 levels appeared to localize both inside and outside the muscle fibers with significant extracellular Gal-1 colocalized with infiltrating CD45(+) leukocytes. By contrast, regenerating muscle tissue showed a marked decrease in Gal-1 to baseline levels. These results demonstrate significant regulation of Gal-1 expression in vivo and suggest a potential role for Gal-1 in muscle homeostasis and repair.
Resumo:
Most meningiomas are benign tumours of arachnoidal origin, although a small number have high proliferative rates and invasive properties which complicate complete surgical resection and are associated with increased recurrence rates. Few prognostic indicators exist for meningiomas and further research is necessary to identify factors that influence tumour invasion, oedema and recurrence. Paraffin sections from 25 intracranial meningiomas were analysed for expression of the proteins vascular endothelial growth factor (VEGF), VEGF receptors Flt1 and Flk1, E-cadherin, metalloproteinases 2 and 9 (MMP2, MMP9), CD44, receptor for hyaluronic acid-mediated motility (RHAMM), hyaluronic acid (HA), CD45, cyclooxygenase 2 (COX2), brain fatty acid binding protein (BFABP), Ki67, and proliferating cell nuclear antigen (PCNA). Correlations among protein expression were found for several markers of proliferation (Ki67, PCNA, MI) and microvessel density (MVD). COX2 expression increased with increasing with tumour grade and correlated with Ki67, PCNA, MI, MVD, and BFABP. BFABP expression also correlated with Ki67 and PCNA expression. Relationships were also identified among angiogenic factors (VEGF, Flt1, Flk1) and proliferation markers. Oedema was found to correlate with MMP9 expression and MMP9 also correlated with proliferation markers. No correlations were found for MMP2, E-cadherin, or CD44 in meningiomas. In conclusion Ki67, PCNA, MI, MVD, BFABP, and COX2 were significantly correlated with meningioma tumour grade and with each other. These findings, by correlating both intracellular fatty acid transport and eicosanoid metabolism with tumour proliferation, as determined by Ki67 labelling and mitotic index, suggest fatty acids are involved in the progression of meningiomas.
Resumo:
To identify novel genes involved in the molecular pathogenesis of chronic lymphocytic leukemia (CLL) we performed a serial analysis of gene expression (SAGE) in CLL cells, and compared this with healthy B cells (nCD19(+)). We found a high level of similarity among CLL subtypes, but a comparison of CLL versus nCD19(+) libraries revealed 55 genes that were over-represented and 49 genes that were down-regulated in CLL. A gene ontology analysis revealed that TOSO, which plays a functional role upstream of Fas extrinsic apoptosis pathway, was over-expressed in CLL cells. This finding was confirmed by real-time reverse transcription-polymerase chain reaction in 78 CLL and 12 nCD19(+) cases (P <.001). We validated expression using flow cytometry and tissue microarray and demonstrated a 5.6-fold increase of TOSO protein in circulating CLL cells (P =.013) and lymph nodes (P =.006). Our SAGE results have demonstrated that TOSO is a novel overexpressed antiapoptotic gene in CLL.
Resumo:
Dps, found in many eubacterial and archaebacterial species, appears to protect cells from oxidative stress and/or nutrient-limited environment. Dps has been shown to accumulate during the stationary phase, to bind to DNA non-specifically, and to form a crystalline structure that compacts and protects the chromosome. Our previous results have indicated that Dps is glycosylated at least for a certain period of the bacterial cell physiology and this glycosylation is thought to be orchestrated by some factors not yet understood, explaining our difficulties in standardizing the Dps purification process. In the present work, the open reading frame of the dps gene, together with all the upstream regulatory elements, were cloned into a PCR cloning vector. As a result, the expression of dps was also controlled by the plasmid system introduced in the bacterial cell. The gene was then over-expressed regardless of the growth phase of the culture and a glycosylated fraction was purified to homogeneity by lectin-immobilized chromatography assay. Unlike the high level expression of Dps in Salmonella cells, less than 1% of the recombinant protein was purified by affinity chromatography using jacalin column. Sequencing and mass spectrometry data confirmed the identity of the dps gene and the protein, respectively. In spite of the low level of purification of the jacalin-binding Dps, this work shall aid further investigations into the mechanism of Dps glycosylation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: The most primitive leukemic precursor in acute myeloid leukemia (AML) is thought to be the leukemic stem cell (LSC), which retains the properties of self-renewal and high proliferative capacity and quiescence of the hematopoietic stem cell. LSC seems to be immunophenotypically distinct and more resistant to chemotherapy than the more committed blasts. Considering that the multidrug resistance (MDR) constitutive expression may be a barrier to therapy in AML, we have investigated whether various MDR transporters were differentially expressed at the protein level by different leukemic subsets. Methods: The relative expression of the drug-efflux pumps P-gp, MRP, LRP, and BCRP was evaluated by mean fluorescence index (MFI) and the Kolmogorov-Smirnov analysis (D values) in five leukemic subpopulations: CD34(+)CD38(-)CD123(+) (LSCs), CD34(+)CD38(+)CD123(-), CD34(+)CD38(+)CD123(+), CD34(+)CD38(+)CD123(-), and CD34(-) mature cells in 26 bone marrow samples of CD34(+) AML cases. Results: The comparison between the two more immature subsets (LSC versus CD34(+)CD38(-)CD123(-) cells) revealed a higher P-gp, MRP, and LRP expression in LSCs. The comparative analysis between LSCs and subsets of intermediate maturation (CD34(+)CD38(+)) demonstrated the higher BCRP expression in the LSCs. In addition, P-gp expression was also significantly higher in the LSC compared to CD34(+)CD38(+)CD123(-) subpopulation. Finally, the comparative analysis between LSC and the most mature subset (CD34(-)) revealed higher MRP and LRP and lower P-gp expression in the LSCs. Conclusions: Considering the cellular heterogeneity of AML, the higher MDR transporters expression at the most immature, self-renewable, and quiescent LSC population reinforces that MDR is one of the mechanisms responsible for treatment failure. (C) 2008 Clinical Cytometry Society.
Resumo:
Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPAR alpha and PPAR gamma, and plasma insulin-like growth factor 1 IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPAR gamma protein, not PPAR alpha, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. J. Nutr. 141: 1049-1055, 2011.
Resumo:
Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silica analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.
Resumo:
In temporal lobe epilepsy (TLE) seizures, tonic or clonic motor behaviors (TCB) are commonly associated with automatisms, versions, and vocalizations, and frequently occur during secondary generalization. Dystonias are a common finding and appear to be associated with automatisms and head deviation, but have never been directly linked to generalized tonic or clonic behaviors. The objective of the present study was to assess whether dystonias and TCB are coupled in the same seizure or are associated in an antagonistic and exclusive pattern. Ninety-one seizures in 55 patients with TLE due to mesial temporal sclerosis were analyzed. Only patients with postsurgical seizure outcome of Engel class I or II were included. Presence or absence of dystonia and secondary generalization was recorded. Occurrence of dystonia and occurrence of bilateral tonic or clonic behaviors were negatively correlated. Dystonia and TCB may be implicated in exclusive, non-coincidental, or even antagonistic effects or phenomena in TLE seizures. A neural network related to the expression of one behavioral response (e.g., basal ganglia activation and dystonia) might theoretically ""displace"" brain activation or disrupt the synchronism of another network implicated in pathological circuit reverberation and seizure expression. The involvement of basal ganglia in the blockade of convulsive seizures has long been observed in animal models. The question is: Do dystonia and underlying basal ganglia activation represent an attempt of the brain to block imminent secondary generalization? (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Background and Purpose-Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods-Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results-Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions-The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke. (Stroke. 2010; 41:1921-1926.)
Resumo:
The interaction between the reproductive axis and energy balance suggests that leptin acts as a possible mediator. This hormone acts in the regulation of metabolism, feeding behaviour and reproduction. Animals homozygous for the gene `ob` (ob/ob) are obese and infertile, and these effects are reversed after systemic administration of leptin. Thus, the present study aimed to determine: (i) whether cells that express leptin also express oestrogen receptors of type-alpha (ER-alpha) or -beta (ER-beta) in the medial preoptic area (MPOA) and in the arcuate (ARC), dorsomedial (DMH) and ventromedial hypothalamic nucleus and (ii) whether there is change in the gene and protein expression of leptin in these brain areas in ovariectomised (OVX) animals when oestrogen-primed. Wistar female rats with normal oestrous cycles or ovariectomised oestrogen-primed or vehicle (oil)-primed were utilised. To determine whether there was a co-expression, immunofluorescence was utilised for double staining. Confocal microscopy was used to confirm the co-expression. The technique of real-time polymerase chain reaction and western blotting were employed to analyse gene and protein expression, respectively. The results obtained showed co-expression of leptin and ER-alpha in the MPOA and in the DMH, as well as leptin and ER-beta in the MPOA, DMH and ARC. However, we did not detect leptin in the MPOA, ARC and DMH using western blotting and there was no statistical difference in leptin gene expression in the MPOA, DMH, ARC, pituitary or adipose tissue between OVX rats treated with oestrogen or vehicle. In conclusion, the results obtained in the present study confirm that the brain is also a source of leptin and reveal co-expression of oestrogen receptors and leptin in the same cells from areas related to reproductive function and feeding behaviour. Although these data corroborate the previous evidence obtained concerning the interaction between the action of brain leptin and reproductive function, the physiological relevance of this interaction remains uncertain and additional studies are necessary to elucidate the exact role of central leptin.
Resumo:
Background. Defects in apoptosis signaling have been considered to be responsible for treatment failure in many types of cancer, although with controversial results. The objective of the present study was to assess the expression profile of key apoptosis-related genes in terms of clinical and biological variables and of the survival of children with acute lymphoblastic leukemia (ALL). Procedure. The levels of mRNA expression of the apoptosis-related genes CASP3, CASP8, CASP9, FAS, and BCL2 were analyzed by quantitative real-time PCR in consecutive samples from 139 consecutive children with ALL at diagnosis treated by the Brazilian protocol (GBTLI-ALL 99). Gene expression levels and clinical and biological features were compared by the Mann-Whitney test. Event-free survival (EFS) was calculated by Kaplan-Meier plots and log-rank test. Results. A significant correlation was detected between CASP3, CASP8, CASP9, and FAS expression levels (P<0.01) in ALL samples. Higher levels of BCL2 were significantly associated with white blood cell (WBC) count <50,000/mm(3) at diagnosis (P=0.01) and low risk group classification (P=0.008). Lower expression levels of CASP3, CASP8 and FAS gene were associated with a poor response at day 7 according the GBTLI-ALL 99 protocol (P=0.03, P=0.02 and P=0.008, respectively). There was a relationship between FAS gene expression lower than the 75th percentile and lower 5-year EFS (P=0.02). Conclusion. These findings suggest an association between lower expression levels of the pro-apoptotic genes and a poor response to induction therapy at day 7 and prognosis in childhood ALL. Pediatr Blood Cancer 2010;55:100-107. (C) 2010 Wiley-Liss, Inc.
Resumo:
Galectin-3 (Gal-3) is a glycan-binding protein highly expressed in several tumors, including brain neoplasms. This protein has been demonstrated to be correlated with adverse prognosis in some tumor types. However, the role of Gal-3 in pediatric posterior fossa tumors (PPFTs) has not yet been fully addressed. The goals of this study were to evaluate Gal-3 expression in a series of PPFTs and verify whether this expression is related to patient outcome. Gal-3 expression was analyzed by immunohistochemistry in 42 cases of surgically resected primary PPFTs. Surgeries were performed in our institution from January 2003 to December 2006. Tumor samples consisted of 21 pilocytic astrocytomas (PAs), 13 medulloblastomas, 4 ependymomas, 2 diffuse cerebellar astrocytomas, and 2 atypical teratoid/rhabdoid tumors (AT/RTs). All PAs and ependymomas strongly showed Gal-3 expression, whereas no immunostaining was observed in medulloblastomas and diffuse astrocytomas. In AT/RTs, Gal-3 expression was conspicuous but heterogeneous, being mainly observed in rhabdoid cells. Concerning the Gal-3 expressing tumors, no relationship was observed between the degree of expression and patient survival. Gal-3 was strongly expressed in reactive astrocytes, normal endothelial cells, and macrophages in the adjacent non-neoplastic brain parenchyma. Interestingly, the endothelial cells in the tumor bulk of PAs lacked Gal-3 expression. Gal-3 is differentially expressed in PPFTs, but its expression shows no correlation with patient outcome. However, the evaluation of Gal-3 is helpful in establishing a differential diagnosis among PPFTs, especially between PAs and diffuse astrocytomas, and in some circumstances between medulloblastomas and AT/RTs.
Resumo:
Leptospirosis is a zoonotic disease of global distribution, which affects both animals and humans. Pathogenic leptospires, the bacteria that cause this disease, require iron for their growth, and these spirochetes probably use their hemolysins, such as the sphingomyelinases, as a way to obtain this important nutrient from host red blood cells during infection. We expressed and purified the leptospiral sphingomyelinases Sph1, Sph2, Sph4, and SphH in a heterologous system. However, the recombinant proteins were not able to lyse sheep erythrocytes, despite having regular secondary structures. Transcripts for all sphingomyelinases tested were detected by RT-PCR analyses, but only Sph2 and SphH native proteins could be detected in Western blot assays using Leptospira whole extracts as well as in renal tubules of infected hamsters. Moreover, antibodies present in the serum of a human patient with laboratory-confirmed leptospirosis recognized Sph2, indicating that this sphingomyelinase is expressed and exposed to the immune system during infection in humans. However, in an animal challenge model, none of the sphingomyelinases tested conferred protection against leptospirosis.
Resumo:
Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin-sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines.
Resumo:
The role of innate immune responses in protection against leptospirosis remains unclear. We examined the expression of the chemokines CCL2/JE (MCP-1), CCL3/MIP-1 alpha (MIP-1 alpha) and CXCL1/KC (IL-8) regarding resistance and susceptibility to leptospirosis in experimental mice models BALB/c and C3H/HeJ, respectively. A virulent strain of Leptospira interrogans serovar Copenhageni was used in this study. Twenty-five animals of each mouse strain of C3H/HeJ and BALB/c, were infected intraperitoneally with 106 cells. Five un-infected animals of each strain were kept as control. Mortality of C3H/HeJ mouse was observed while BALB/c mice were asymptomatic. The presence of leptospire DNA in tissues of infected animals was demonstrated by PCR. Chemokines were measured in serum, spleen, liver, kidney and lung of both strains of animals using immunoenzymatic assay (ELISA). Elevations in the levels of chemokines MCP-1 and IL-8 occurred in all organs and sera of C3H/HeJ and BALB/c infected mice. The levels of MIP-1 alpha were lower when compared to MCP-1 and IL-8 in all analyzed organs, with a slight increase in liver and kidney. Our results indicate that the expression of inflammatory mediators can vary greatly, depending on the tissue and mouse strains. It is possible that the resistance to Leptospira can be partially correlated to the increase of MIP-1 alpha observed in BALB/c mice, while an increasing and a sustained expression of MCP-1 and IL-8 in the lungs of C3H/HeJ mice can be correlated to the severity and progression of leptospirosis. (C) 2009 Elsevier Ltd. All rights reserved.