370 resultados para induced fit
Resumo:
The study investigated whether chronic ethanol (ETH) intake and subsequent ETH exposure of cell cultures affects osteoblast differentiation by evaluating key parameters of in vitro osteogenesis. Rats were treated with 5-20% (0.85-3.43 mM) ETH, increasing by 5% per week for a period of 4 weeks (habituation), after which the 20% level was maintained for 15 days (chronic intake). Bone-marrow stem cells from control (CONT) or ETH-treated rats were cultured in osteogenic medium which was either supplemented (ETH) or not supplemented (CONT) with 1.3 mm ethanol. Thus, four groups relating to rat treatment/culture supplementation were evaluated: (1) CONT/CONT, (2) ETH/CONT, (3) CONT/ETH and (4) ETH/ETH Cell morphology, proliferation and viability, total protein content, alkaline phosphatase (ALP) activity and bone-like nodule formation were evaluated. Chronic ethanol intake significantly reduced both food and liquid consumption and body weight gain. No difference was seen in cell morphology among treatments. Cell number was affected at 7 and 10 days as follows: CONT/CONT = CONT/ETH < ETH/CONT = ETH/ETH. Doubling time between 3 and 10 days was greater in groups of CONT animals: ETH/ETH = ETH/CONT < CONT/ETH = CONT/CONT. Cell viability and ALP activity were not affected by either animal treatment or culture exposure to ethanol. At day 21, the total protein content was affected as follows: ETH/ETH = CONT/ETH < ETH/CONT = CONT/CONT. Bone-like nodule formation was affected as follows: ETH/ETH < CONT/ETH < ETH/CONT < CONT/CONT. These results show that chronic ethanol intake, followed by the exposure of osteoblasts to ethanol, inhibited the differentiation of osteoblasts, as indicated by an increased proliferation rate and reduced bone-like nodule formation. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Objectives: This study evaluated key parameters of the in vitro osteogenesis induced by osteoblastic cells obtained from sites submitted to sinus grafting with anorganic bovine bone (ABB) in comparison with cells derived from bone sites of the same patients. Materials and methods: In three patients, the augmentation of maxillary sinus was carried out using ABB (Bio-Oss (R)). After at least 6 months, during the surgical intervention for titanium implants placement, biopsies were taken from these areas using trephine burs (grafted group). Bone fragments, of the same patients, from sites that had not received graft were also obtained with trephine burs and used as a control group. Osteoblastic cells were obtained from grafted and control groups by enzymatic digestion and cultured under standard osteogenic condition until subconfluence. First passaged cells were cultured in 24-well culture plates. Cell adhesion was evaluated at 24 h. For proliferation and viability assay, cells were cultured for 1, 3, 7, and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 3, 7, 10, 14, 17, and 21 days. Cultures were stained with Alizarin red S at 21 days, for detection of mineralized matrix. Data were compared by Student`s t-test. Results: Cell adhesion and viability were not affected by cell source (P>0.05). Total protein content was greater (P<0.05) for grafted group. Cell proliferation, ALP activity, and bone-like nodule formation were all greater (P<0.05) for the control group. Conclusions: Taken together, these results indicate that the in vivo long-term contact of cells with ABB downregulates the expression of osteoblast phenotype and consequently the in vitro osteogenesis.
Resumo:
Heme oxygenase-carbon monoxide-cGMP (HO-CO-cGMP) pathway has been reported to be involved in peripheral and spinal modulation of inflammatory pain. However, the involvement of this pathway in the modulation of acute painful stimulus in the absence of inflammation remains unknown. Thus, we evaluated the involvement of the HO-CO-cGMP pathway in nociception by means the of analgesia index (AI) in the tail flick test. Rats underwent surgery for implantation of unilateral guide cannula directed toward the lateral ventricle and after the recovery period (5-7 days) were subjected to the measures of baseline tail flick test Animals were divided into groups to assess the effect of intracerebroventricular administration (i.c.v.) of the following compounds: ZnDPBG (HO inhibitor) or vehicle (Na(2)CO(3)), heme-lysinate (substrate overload) or vehicle (L-lysine), or the selective inhibitor of soluble guanilate cyclase ODQ or vehicle (DMSO 1%) following the administration of heme-lysinate or vehicle. Heme overload increased AI, indicating an antinociceptive role of the pathway. This response was attenuated by i.c.v. pretreatment with the HO inhibitor ZnDPBG. In addition, this effect was dependent on cGMP activity, since the pretreatment with ODQ blocked the increase in the AI. Because CO produces most of its actions via cGMP, these data strongly imply that CO is the HO product involved in the antinociceptive response. This modulation seems to be phasic rather than tonic, since i.c.v. treatment with ZnDPBG or ODQ did not alter the AI. Therefore, we provide evidence consistent with the notion that HO-CO-cGMP pathway plays a key phasic antinociceptive role modulating noninflammatory acute pain. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia and hypercapnia. We assessed the role of ionotropic glutamate receptors in the rostral MR (rMR) in the respiratory responses to hypoxia and hypercapnia by measuring pulmonary ventilation (V(E)) and body temperature (Tb) of male Wistar rats before and after microinjecting Kynurenic acid (KY, an ionotropic glutamate receptors antagonist, 0.1 mM) into the rMR followed by 60 min of hypoxia (7% O(2)) or hypercapnia exposure (7% CO(2)). Compared to the control group, the ventilatory response to hypoxia was attenuated in animals treated with KY intra-rMR, however the ventilatory response to hypercapnia increased significantly. No differences in Tb among groups were observed during hypoxia or hypercapnia. These data suggest that the glutamate acting on ionotropic receptors in the rMR exerts an excitatory modulation on hyperventilation induced by hypoxia but an inhibitory modulation on the hypercapnia-induced hyperpnea. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Drugs that facilitate dopaminergic neurotransmission induce cognitive and attentional deficits which include inability to filter sensory input measured by prepulse inhibition (PPI) Methylphenidate, an amphetamine analog is used in the treatment of attention deficit hyperactivity disorder Given that nitric oxide (NO) modulates dopamine effect our aim is to analyze the nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC) inhibitors effect on PPI disruption induced by methylphenidate The inhibitors effects were compared to those produced by haloperidol and clozapine Male Swiss mice received a first I p. Injection (one hour before testing), of either saline, or N(G) nitro L-arginine (10, 40 or 90 mg/kg) or 7-Nitroindazole (3, 10, 30 or 60 mg/kg). or oxadiazolo-quinoxalin (5 or 10 mg/kg). or haloperidol (1 mg/kg), or clozapine (5 mg/kg) Thirty min later mice received the second injection of either saline or methylphenidate (20 or 30 mg/kg) or amphetamine (5 or 10 mg/kg). One group of mice received intracerebroventricular 7-Nitroindazole (50 or 100 nM) followed by systemic administration of saline or methylphenidate (30 mg/kg) The results revealed a methylphenidate dose-dependent disruption of PPI comparable to amphetamine. The effect was prevented by either nitric oxide synthase or guanilate cyclase inhibitors or clozapine or haloperidol In conclusion, methylphenidate induced a dose-dependent PPI disruption in Swiss mice modulated by dopamine and NO/sGC. The results corroborate the hypothesis of dopamine and NO interacting to modulate sensorimotor gating through central nervous system. It may be useful to understand methylphenidate and other psychostimulants effects (C) 2009 Elsevier B.V All rights reserved
Resumo:
Tonic immobility (TI) is a temporary state of profound motor inhibition induced by situations that generate intense fear, with the objective of protecting an animal from attacks by predators. A preliminary study by our group demonstrated that microinjection into the basolateral nucleus of the amygdala (BLA) of an agonist to 5-HT(1A) and 5-HT(2) receptors promoted a decrease in TI duration. In the current study, the effects of GABAergic stimulation of the BLA and the possible interaction between GABA(A) and 5-HT(2) receptors on TI modulation were investigated. Observation revealed that GABAergic agonist muscimol (0.26 nmol) reduced the duration of TI episodes, while microinjection of the GABAergic antagonist bicuculline (1 nmol) increased TI duration. Additionally, microinjection of 5-HT(2) agonist receptors (alpha-methyl-5-HT, 0.32 nmol) into the BLA decreased TI duration, an effect reversed by pretreatment with bicuculline (at the dose that had no effect per se, 0.2 nmol). Moreover, the activation of GABA(A) and 5-HT(2) receptors in the BLA did not alter the spontaneous motor activity in the open field test. These experiments demonstrated that the activation of GABA(A) and 5-HT(2) receptors of the BLA possibly produce a reduction in unconditioned fear that decreases the TI duration in guinea pigs, but this is not due to increased spontaneous motor activity, which could affect a TI episode nonspecifically. Furthermore, these results suggest an interaction between GABAergic and serotoninergic mechanisms mediated by GABA(A) and 5-HT(2) receptors. In addition, the GABAergic circuit of the BLA presents a tonic inhibitory influence on TI duration. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We examined whether two functional polymorphisms (g.-1562C>T and g.-90(CA)14-24) in the matrix metalloproteinase (MMP)-9 gene or MMP-9 haplotypes affect the circulating levels of pro-MMP-9 and pro-MMP-9/TIMP-1 (tissue inhibitor of metalloproteinase-1) ratios in AIDS patients, and modulate alterations in these biomarkers after highly active antiretroviral therapy (HAART). We studied 82 patients commencing HAART. Higher pro-MMP-9 concentrations and pro-MMP-9/TIMP-1 ratios were found in CT/TT patients compared with CC patients. HAART decreased pro-MMP-9 levels and pro-MMP-9/TIMP-1 ratios in CT/TT patients, it did not modify pro-MMP-9 levels and it increased pro-MMP-9/TIMP-1 ratios in CC patients. The g.-90(CA)14-24 polymorphism, however, produced no significant effects. Moreover, we found no significant differences in HAART-induced changes in plasma pro-MMP-9, TIMP-1 and pro-MMP-9/TIMP-1 ratios when different MMP-9 haplotypes were compared. These findings suggest that the g.-1562C>T polymorphism affects pro-MMP-9 levels in patients with AIDS and modulates the alterations in pro-MMP-9 levels caused by HAART, thus possibly affecting the risk of cardiovascular complications. The Pharmacogenomics Journal (2009) 9, 265-273; doi: 10.1038/tpj.2009.13; published online 21 April 2009
Resumo:
Chronic L-DOPA pharmacotherapy in Parkinson`s disease is often, accompanied by the development of abnormal and excessive movements known as L-DOPA-induced dyskinesia. Rats with 6-hydroxydopamine lesion of dopaminergic neurons chronically treated with L-DOPA develop a rodent analog of this dyskinesia characterized by severe axial, limb, locomotor and orofacial abnormal involuntary movements. While the mechanisms by which these effects occur are not clear, they may involve the nitric oxide system. In the present study we investigate if nitric oxide synthase inhibitors can prevent dyskinesias induced by repeated administration Of L-DOPA in rats with unilateral 6-hydroxydopamine lesion. Chronic L-DOPA (high fixed dose, 100 mg/kg; low escalating dose, 10-30 mg/kg) treatment induced progressive dyskinesia changes. Two nitric oxide synthase inhibitors, 7-nitroindazole (1-30 mg/kg) and NG-nitro-L-arginine (50 mg/kg), given 30 min before L-DOPA, attenuate dyskinesia. 7-Nitroindazolee also improved motor performance of these animals in the rota-rod test. These results suggest the possibility that nitric oxide synthase inhibitors may be useful to treat L-DOPA.-Induced dyskinesia. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia. Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2). Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea. Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.
Resumo:
Previous reports about the rat ovary have shown that cold stress promotes ovarian morphological alterations related to a polycystic ovary (PCO) condition through activation of the ovarian sympathetic nerves. Because the noradrenergic nucleus locus coeruleus (LC) is activated by cold stress and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway, this study aimed to evaluate the LC`s role in cold stress-induced PCO in rats. Ovarian morphology and endocrine and sympathetic functions were evaluated after 8 wk of chronic intermittent cold stress (4 C, 3 h/d) in rats with or without LC lesion. The effect of acute and chronic cold stress upon the LC neuron activity was confirmed by Fos protein expression in tyrosine hydroxylase-immunoreactive neurons. Cold stress induced the formation of follicular cysts, type III follicles, and follicles with hyperthecosis alongside increased plasma estradiol and testosterone levels, irregular estrous cyclicity, and reduced ovulation. Considering estradiol release in vitro, cold stress potentiated the ovarian response to human chorionic gonadotropin. Ovarian norepinephrine (NE) was not altered after 8 wk of stress. However, LC lesion reduced NE activity in the ovary of cold-stressed rats, but not in controls, and prevented all the cold stress effects evaluated. Cold stress increased the number of Fos/tyrosine hydroxylase-immunoreactive neurons in the LC, but this effect was more pronounced for acute stress as compared with chronic stress. These results show that cold stress promotes PCO in rats, which apparently depends on ovarian NE activity that, under this condition, is regulated by the noradrenergic nucleus LC.