363 resultados para Wasserman, Fabio
Resumo:
Objectives: To compare the circulating levels of matrix metalloproteinase (MMP)-8, pro-MMP-2, pro-MMP-9, and total MMP-9, their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMP)-1 and TIMP-2, and the MMP-8/TIMP-1, MMP-9/TIMP-1, and MMP-2/TIMP-2 ratios in normotensive obese children and adolescents with those found in non obese children and adolescents. Design and methods: We studied 40 obese and 40 non obese (controls) children and adolescents in this cross-sectional study. MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA. Results: Obese children and adolescents had higher circulating MMP-8 concentrations, lower plasma TIMP-1 concentrations, and higher MMP-8/TIMP-1 ratios than non obese controls (P < 0.05). We found no differences in pro-MMP-9 or total MMP-9 levels, or in MMP-9/TIMP-1 ratios between groups (P > 0.05). While we found no significant differences in pro-MMP-2 levels (P > 0.05) obese Subjects had higher TIMP-2 concentrations and lower pro-MMP-2/TIMP-2 ratios (P < 0.05) than non obese controls. Conclusions: In conclusion, we found evidence indicating higher net MMP-8 (but not MMP-9 and MMP-2) activity in childhood obesity. The increased MMP-8 levels found in obese children suggest a possibly relevant pathophysiological mechanism that may be involved in the increase of cardiovascular risk associated with childhood obesity. (c) 2009 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
In the field of regenerative medicine, nanoscale physical cuing is clearly becoming a compelling determinant of cell behavior. Developing effective methods for making nanostructured surfaces with well-defined physicochemical properties is thus mandatory for the rational design of functional biomaterials. Here, we demonstrate the versatility of simple chemical oxidative patterning to create unique nanotopographical surfaces that influence the behavior of various cell types, modulate the expression of key determinants of cell activity, and offer the potential of harnessing the power of stem cells. These findings promise to lead to a new generation of improved metal implants with intelligent surfaces that can control biological response at the site of healing.
Resumo:
Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.