398 resultados para Peanut Hypersensitivity -- immunology
Resumo:
The intracellular bacterium Legionella pneumophila induces a severe form of pneumonia called Legionnaires diseases, which is characterized by a strong neutrophil (NE) infiltrate to the lungs of infected individuals. Although the participation of pattern recognition receptors, such as Toll-like receptors, was recently demonstrated, there is no information on the role of nod-like receptors (NLRs) for bacterial recognition in vivo and for NE recruitment to the lungs. Here, we employed a murine model of Legionnaires disease to evaluate host and bacterial factors involved in NE recruitment to the mice lungs. We found that L. pneumophila type four secretion system, known as Dot/Icm, was required for NE recruitment as dot/icm mutants fail to trigger NE recruitment in a process independent of bacterial multiplication. By using mice deficient for Nod1, Nod2, and Rip2, we found that these receptors accounted for NE recruitment to the lungs of infected mice. In addition, Rip2-dependent responses were important for cytokine production and bacterial clearance. Collectively, these studies show that Nod1, Nod2, and Rip2 account for generation of innate immune responses in vivo, which are important for NE recruitment and bacterial clearance in a murine model of Legionnaires diseases. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T cruzi infection. (c) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
IL-13 and eotaxin play important, inter-related roles in asthma models. In the lungs, CysLT, produced by the 5-LO-LTC4S pathway, mediate some local responses to IL-13 and eotaxin; in bone marrow, CysLT enhance IL-5-dependent eosinophil differentiation. We examined the effects of IL-13 and eotaxin on eosinophil differentiation. Semi-solid or liquid cultures were established from murine bone marrow with GM-CSF or IL-5, respectively, and the effects of IL-13, eotaxin, or CysLT on eosinophil colony formation and on eosinophil differentiation in liquid culture were evaluated, in the absence or presence of: a) the 5-LO inhibitor zileuton, the FLAP inhibitor MK886, or the CysLT1R antagonists, montelukast and MK571; b) mutations that inactivate 5-LO, LTC4S, or CysLT1R; and c) neutralizing mAb against eotaxin and its CCR3 receptor. Both cytokines enhanced GM-CSF-dependent eosinophil colony formation and IL-5-stimulated eosinophil differentiation. Although IL-13 did not induce eotaxin production, its effects were abolished by anti-eotaxin and anti-CCR3 antibodies, suggesting up-regulation by IL-13 of responses to endogenous eotaxin. Anti-CCR3 blocked eotaxin completely. The effects of both cytokines were prevented by zileuton, MK886, montelukast, and MK571, as well as by inactivation of the genes coding for 5-LO, LTC4S, and CysLT1R. In the absence of either cytokine, these treatments or mutations had no effect. These findings provide evidence for: a) a novel role of eotaxin and IL-13 in regulating eosinophilopoiesis; and b) a role for CysLTRs in bone marrow cells in transducing cytokine regulatory signals. J. Leukoc. Biol. 87: 885-893; 2010.
Resumo:
To study and characterize the in vivo effect of the lectin from Luetzelburgia auriculata seed on acute inflammation models. The lectin was purified from the crude saline extract by affinity chromatography on a guar-gum matrix. Native, heat-treated, and digested lectin was evaluated for anti-inflammatory activity by using peritonitis and paw edema models. The anti-inflammatory activity was characterized by intravital microscopy, nitric oxide production, and myeloperoxidase activity. The lectin exhibited anti-inflammatory activity (2 mg/kg) on both models, reducing local myeloperoxidase activity. Galactose or heat treatment (100A degrees C, 10 min) reduced anti-inflammatory action. Anti-inflammation involves the inhibition of adhesion and rolling of leukocytes along with augmentation of nitric oxide in serum. The lectin inhibited the edematogenic effect of histamine and prostaglandins (PGE2) but did not alter the chemoattractant effect of IL-8. The results indicate that this lectin is a potent anti-inflammatory molecule. Its effects engage diverse modulatory events.
Resumo:
Aims: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. Main methods: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase C epsilon (PKC epsilon), and the extracellular signal-related kinase (ERK) inhibitors. Key findings: Single or 14 days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30 days), respectively. The involvement of AC, PKA or PKC epsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKC epsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKC epsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKC epsilon or AC. Significance: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.
Resumo:
Rosiglitazone (RGZ), an oral anti-hyperglycemic agent used for non-insulin-dependent diabetes mellitus, is a high-affinity synthetic agonist for peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Both in vitro and in vivo experiments have also revealed that RGZ possesses anti-inflammatory properties. Therefore, in the present study, we investigated the anti-inflammatory effects of RGZ in a rat model of periodontal disease induced by ligature placed around the mandible first molars of each animal. Male Wister rats were divided into four groups: 1) animals without ligature placement receiving administration of empty vehicle (control); 2) animals with ligature receiving administration of empty vehicle; 3) animals with ligature receiving administration with oral RGZ (10 mg/kg/day); and 4) animals with ligature receiving administration of subcutaneous RGZ (10 mg/kg/day). Thirty days after induction of periodontal disease, the animals were sacrificed, and mandibles and gingival tissues were removed for further analysis. An in vitro assay was also employed to test the inhibitory effects of RGZ on osteoclastogenesis. Histomorphological and immunohistochemical analyses of periodontal tissue demonstrated that RGZ-treated animals presented decreased bone resorption, along with reduced RANKL expression, compared to those animals with ligature, but treated with empty vehicle. Corresponding to such results obtained from in vivo experiments, RGZ also suppressed in vitro osteoclast differentiation in the presence of RANKL in MOCP-5 osteoclast precursor cells, along with the down-regulation of the expression of RANKL-induced TRAP mRNA. These data indicated that RGZ may suppress the bone resorption by inhibiting RANKL-mediated osteoclastogenesis elicited during the course of experimental periodontitis in rats. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Resumo:
Neuropathic pain is a chronic disease resulting from dysfunction of the nervous system often due to peripheral nerve injury. Hypersensitivity to sensory Stimuli (mechanical, thermal or chemical) is a common source of pain in patients and ion channels involved in detecting these Stimuli are possible candidates for inducing and/or maintaining the pain. Transient receptor potential (TRP) channels expressed on nociceptors respond to different sensory stimuli and a few of them have been studied previously in the models of neuropathic pain. Using real-time PCR for quantification of all known TRP channels we identified several TRP channels, which have not been associated with nociception OF neuropathic pain before, to be expressed in the DRG and to be differentially regulated after spared nerve injury (SNI). Of all TRP channel members, TRPML3 showed the most dramatic change in animals exhibiting neuropathic pain behaviour compared to control animals. fit situ hybridisation showed a widespread increase of expression ill neurons of small, medium and large cell sizes, indicating expression ill multiple subtypes. Co-localisation of TRPML3 with CGRP, NF200 and IB4 staining confirmed a broad Subtype distribution. Expression studies during development showed that TRPML3 is all embryonic channel that is induced upon nerve injury in three different nerve injury models investigated. Thus. the current results link for the first time a re-expression of TRPML3 with the development of neuropathic pain conditions. In addition, decreased mRNA levels after SNI were seen for TRPM6, TRPM8, TRPV1, TRPA1, TRPC3, TRPC4 and TRPC5. (C) 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
To identify genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in palA, a gene in the pH-responsive signal transduction pathway, suppression subtractive hybridization was performed between RNA isolated from the biA1 and biA1 palA1 strains grown under limiting inorganic phosphate at pH 5.0. We have identified several genes upregulated in the biA1 palA1 mutant strain that play important roles in mitotic fidelity, stress responses, enzyme secretion, signal transduction mechanisms, development, genome stability, phosphate sensing, and transcriptional regulation among others. The upregulation of eight of these transcripts was also validated by Northern blot. Moreover, we show that a loss of function mutation in the palA gene drastically reduced the neutral sugar content of the acid phosphatase PacA secreted by the fungus A. nidulans grown at pH 5.0 compared with a control strain.
Resumo:
Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts over-expressed in T rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-beta-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.
Resumo:
Studies have shown that autologous hematopoietic SCT (HSCT) can be used as an intensive immunosuppressive therapy to treat refractory patients and to prevent the progression of multiple sclerosis (MS). This is a prospective multicentric Brazilian MS trial comparing two conditioning regimens: BEAM/horse ATG and CY/rabbit ATG. Most (80.4%) of the 41 subjects in the study had the secondary progressive MS subtype and the mean age was 42 years. The baseline EDSS score in 58.5% of the subjects was 6.5 and 78% had a score of 6.0 or higher, respectively. The complication rate during the intra-transplantation period was 56% for all patients: 71.4% of the patients in the BEAM/hATG group and 40% in the CY/rATG group (P = 0.04). Three subjects (7.5%) died of cardiac toxicity, sepsis and alveolar hemorrhage, all of them in the BEAM/ATG group. EFS was 58.54% for a ll patients: 47% in the BEAM/hATG group and 70% in the CY/rATG group (P = 0.288). In conclusion, the CY/rATG regimen seems to be associated with similar outcome results, but presented less toxicity when compared with the BEAM/hATG regimen. Long-term follow-up would be required to fully assess the differences in therapeutic effectiveness between the two regimens. Bone Marrow Transplantation (2010) 45, 239-248; doi:10.1038/bmt.2009.127; published online 6 July 2009
Resumo:
Multiple sclerosis (MS) is an autoimmune disease causing severe neurological disability. This study was carried out in order to determine whether the MMP-9 C(-1562)T and (CA)(13-25) polymorphisms are associated with MS. A total of 165 patients (92 whites/73 mulattos) and 191 controls (96 whites/95 mulattos) were enrolled in the study. While no difference in C(-1562)T polymorphism was observed between MS and healthy subjects, (CA)(n) genotypes and alleles were associated with MS. Moreover, the haplotypes are not associated with MS but seem to be relevant to the clinical status of MS. Thus the (CA)(n) polymorphism may contribute to MS susceptibility, but C(-1562)T and (CA)(n) haplotypes may modulate disease severity. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background Evaluate the production of TNF and IL-6 in the supernatant of peripheral blood mononuclear cell (PBMC) cultures of patients with supraglottic laryngeal cancer before and after surgical treatment. Materials and methods Adherent cell cultures were stimulated with LPS and BCG. Fourteen patients with advanced supraglottic laryngeal cancer were studied. Cytokine concentration was determined by ELISA in supernatants of mononuclear cell cultures. Results In non-stimulated cultures, lower TNF cytokine levels were detected during the late postoperative (LP) period compared to control (P = 0.02). LP TNF and IL-6 levels were high in cultures stimulated with LPS compared with the preoperative period (PREOP) (P = 0.007; P = 0.008, respectively). Stimulation with BCG led to increased levels of TNF and IL-6 during the LP period compared to control (P = 0.001; P = 0.04, respectively). Conclusions BCG is able to modulate the immune response of patients with advanced supraglottic laryngeal cancer in vitro, increasing the secretion of TNF and IL-6 by macrophages during the postoperative period.
Resumo:
Cell resistance to glucocorticoids is a major problem in the treatment of nasal polyposis (NP). The objectives of this study were to observe the effect of budesonide on the expression of IL-1 beta, TNF-alpha, granulocyte macrophage-colony stimulating factor, intercellular adhesion molecule (ICAM)-1, basic fibroblast growth factor, eotaxin-2, glucocorticoid receptor (GR)-alpha, GR-beta, c-Fos and p65 in nasal polyps and to correlate their expression to clinical response. Biopsies from nasal polyps were obtained from 20 patients before and after treatment with topical budesonide. Clinical response to treatment was monitored by a questionnaire and nasal endoscopy. The mRNA levels of the studied genes were measured by real-time quantitative (RQ)-PCR. There was a significant decrease in the expression of TNF-alpha (P < 0.05), eotaxin-2 (P < 0.05) and p65 (P < 0.05) in NP after treatment. Poor responders to glucocorticoids showed higher expression of IL-1 beta (3.74 vs. 0.14; P < 0.005), ICAM-1 (1.91 vs. 0.29; P < 0.05) and p65 (0.70 vs. 0.16; P < 0.05) before treatment. Following treatment, IL-1 beta (4.18 vs. 0.42; P < 0.005) and GR-beta (0.95 vs. 0.28; P < 0.05) mRNA expression was higher in this group. Topical budesonide reduced the expression of TNF-alpha, eotaxin-2 and p65. Poor responders to topical budesonide exhibit higher levels of IL-1 beta, ICAM-1 and nuclear factor (NF)-kappa B at diagnosis and higher expression of both IL-1 beta and GR-beta after treatment. These results emphasize the anti-inflammatory action of topical budesonide at the molecular level and its importance in the treatment of NP. Nevertheless, IL-1 beta, ICAM-1 and NF-kappa B may be associated with primary resistance to glucocorticoids in NP, whereas higher expression of GR-beta in poor responders only after glucocorticoid treatment may represent a secondary drug resistance mechanism in this disease.